Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллическая прочность

    До сих пор остается недостаточно ясным, почему существует такое большое различие в величине и природе металлического перенапряжения для нормальных и инертных металлов и с какими свойствами металлов (или растворов) оно связано. Была сделана попытка объяснить эти явления различным соотношением между прочностью связи ионов в растворе и в кристаллической решетке нормальных и инертных металлов. Подобное предположение эквивалентно допущению, что в разряде участвуют ионы в той форме, в какой они присутствуют в растворе, и что разряд переводит ион непосредственно в его конечное положение в решетке металла. [c.465]


    Степень ионизации вещества в жидком состоянии зависит от прочности его молекул, а также от характера и интенсивности межмолекулярного взаимодействия. Наименьшей степенью ионизации обладают вещества с прочными неполярными ковалентными молекулами (например, жидкие Ог, С12, Ср4 и пр.). Для веществ же с ионной структурой (поскольку они уже состоят из ионов) плавление приводит лишь к разрушению кристаллической решетки и перемещению ионов относительно друг друга. [c.122]

    Тепловая хрупкость и разупрочнение. В результате длительного пребывания при повышенных температурах некоторые стали теряют свои исходные значения вязкости, пластичности и прочности, что связано прежде всего с изменениями кристаллической решетки и микроструктуры стали. Указанное явление потери вязкости и пластичности получило название тепловой хрупкости . Подобные изменения свойств сталей крайне нежелательны и опасны, так как могут привести к разрушению оборудования во время эксплуатации и при ремонтах. Поэтому к материалам обязательно предъявляется требование достаточной стабильности механических свойств и структуры в процессе длительного воздействия рабочих температур. [c.11]

    Но агрегатные кристаллические образования но всегда обладают достаточной жесткостью и при высоких рабочих давлениях фильтрации способны сливаться в единую сплошную непроницаемую массу. Чтобы избежать этого, процесс фильтрации подобных продуктов приходится вести при невысоких перепадах давлений, которые может выдержать механическая прочность отфильтровываемых кристаллических агрегатов. Но уменьшение перепада давлений снижает эффективность процесса фильтрации. В этом случае могут оказаться целесообразными другие методы разделения, например центрифугирование, при которых сжимаемость осадка не имеет такого решающего отрицательного значения. [c.125]

    На установках крекинга широко применяют высокоактивные цеолитсодержащие катализаторы, в которых от 10 до 25 % (масс.) кристаллических алюмосиликатов в массе аморфной матрицы. Это позволяет значительно увеличить выход бензина и повысить его октановое число до 82—84 (моторный метод) или 92—94 (исследовательский метод), а также уменьшить время контакта. Катализатор должен иметь определенный гранулометрический состав, развитую поверхность, высокие пористость и механическую прочность. [c.37]


    Металлическая поверхность не бывает идеальной, на ней практически всегда имеются те или иные дефекты, в частности многочисленные мелкие трещины. Молекулы жидкости при адсорбции такой поверхностью проникают в микротрещины и взаимодействуют с поверхностью металла в момент разрыва или перестройки связей, оказывая определенное влияние на это взаимодействие. Как показал П. А. Ребиндер [212, 213], описанное явление является причиной понижения прочности кристаллической поверхности. Эта особенность взаимодействия адсор-батов с адсорбентами, получившая наименование эффекта Ребиндера, нашла широкое применение в технике, в частности лри бурении твердых пород и механической обработке металла (резании, шлифовании). [c.192]

    Однако не только кристаллизация, по-видимому, способствует повышению когезионной прочности резиновых смесей. Например, наполненные смеси на основе карбоксилсодержащего изопренового каучука — содержание карбоксильных групп не выше 0,25% (мол.) —обладают высокой когезионной прочностью из-за развития ориентационных эффектов, но не обнаруживают кристаллических рефлексов при растяжении вплоть до разрыва. Увеличению [c.234]

    Характерно, что сопротивление разрыву модифицированных бутандиолом полимеров намного выше прочности немодифицированных образцов благодаря взаимодействию уретановых групп в прилежащих к кристаллическим блокам аморфных участках. С возрастанием молекулярной массы блоков повышается степень [c.538]

    Механическая прочность твердых растворов металлов больше прочности нх компонентов. Это объясняется тем, что всякое механическое воздействие стремится сдвинуть один относительно другого плоские слои атомов кристаллической решетки металла. В твердых растворах решетка деформирована. По> этому она больше сопротивляется подобным сдвигам, и ее механическая устойчивость повышается. [c.409]

    Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие нз его физических свойств — прочность, теплопроводность, отношение к свету и др. — не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией. [c.159]

    Белый фосфор имеет молекулярную кристаллическую решетку, в узлах которой находятся тетраэдрические молекулы Р . Прочность связи между атомами в этих молекулах сравнительно невелика. Это объясняет высокую химическую активность белого фосфора. [c.418]

    Фундаменты печей. Фундамент проектируют с усилением под несущими стойками каркаса печи и сооружают из монолитного или сборного железобетона. Площадь опорной плиты рассчитывают с учетом нормативного допускаемого напряжения сжатия бетона. Правильность расположения фундамента и его осей, а также высотных опорных отметок регламентирована нормами предельных отклонений от проектных размеров отклонение осей фундамента и размещения отверстий для фундаментных болтов 10 мм минимальный зазор для подливки между опорной плитой рамы и опорными плоскостями фундамента 25—30 мм. Для защиты бетона от разрушения грунтовыми водами предусматривают при возведении фундаментов дренажные приспособления и гидроизоляцию. Фундаменты конструктивно изолируют от воздействия высоких температур устройством каналов для циркуляции воздуха, так как цемент бетона при 300—400 °С теряет кристаллическую воду, поэтому его прочность снижается. [c.44]

    В последнее время квазихрупким называют разрушение, при котором разрушающее напряжение в сечении нетто Окр выше предела текучести ат, но ниже предела прочности. На рис.3.1 показаны температурные области хрупких I, квазихрупких II и вязких (пластичных) III состояний. В области I скорость трещины велика, излом кристаллический в области II скорость трещины по-прежнему велика (0,2-0,5 скорости звука), излом кристаллический в области III скорость трещины мала (<0,05 скорости звука), излом волокнистый [10]. [c.148]

    Обычно термическое расширение обратно пропорционально прочности межмолекулярной связи. Благодаря анизотропии в некоторых минералах расширение различается в зависимости от направления в кристаллической решетке. Термическое расширение больше у магнезита по сравнению с минералами со сложной структурой, например кремнезема. В связи с этим термическое расширение основных огнеупоров больше, чем кислых. [c.101]

    Активность А1 обусловлена не только участием в образовании связей -орбиталей, но и меньшей по сравнению с бором прочностью кристаллической решетки алюминия. [c.338]

    Электрохимическая коррозия возникает при наличии в непосредственной близости двух различных металлов, окруженных раствором, проводящим электрический ток, — электролитом. Получается своего рода гальванический элемент между обоими металлами возникает электрический ток, и металл, являющийся анодом, станет постепенно разрушаться. Этот процесс будет происходить также и при наличии одного вида металла, если он обладает кристаллической структурой, содержит различные элементы, посторонние примеси и загрязнения, имеет шероховатую неровную поверхность. Хотя возникающие при электрохимической коррозии электрические токи сами по себе весьма слабы и создающие их гальванические микроэлементы ничтожны по своим размерам, их суммарное действие и его большая продолжительность могут весьма сильно разрушать металл и ослаблять его прочность. [c.172]


    Оптимальный катализатор должен иметь высокую прочность, необходимые состав, кристаллическую структуру, микро- и макропористость. Все это может быть обеспечено путем ионного обмена и соответствующей термической обработки. Наряду с основной крекирующей функцией катализатору могут быть приданы некоторые дополнительные функции, способствующие регенерации или уменьшению отравления. [c.110]

    На во духе, как и алюминий, покрывается оксидной пленкой, придающей e у матовый оттенок и обусловливающей пониженную химическую активность. При нагревании бериллий сгорает в кислороде и на воздухе, взаимодействует с серой, азотом. С галогенами реагирует при обычных т1 мпературах или при небольшом нагревании. Все эти реакции сопрог ождаются выделением значительного количества тепла, что опреде ляется большой прочностью кристаллических решеток продуктов взаимодействия ВеО, ВеЗ, ВсзЫз и др. С водородом в обычных условиях Ве не реагирует. [c.471]

    Одной из наиболее валшых проблем в области нeopгaничe кoii химии является установление причин прочности связей, в комплексных попах. Так, и Со обычно очень медленно обменивают связанные с ними группы атомов (лиганды). С другой стороны, АР и Ре обменивают лиганды, такие, как Н2О и СГ, очень быстро. Как мы уже видели, такое поведение тесно связано с вопросом о скоростях окислительно-восстановительных реакций и с переносом заряда. Однако эта связь не одинакова во всех случаях, так как такие комплексы, как Ре (СХ)2 и Ре ( N) ", в которых лиганды очень инертны, легко вступают в реакции с передачей заряда. Таубе [163] дал решение этих вопросов на основании орбитальной модели валентно11 оболочки ионов. Недавно была сделана попытка более количественного решения этих проблем на основании рассмотрения влияния электрических полей лиганд на относительную энергию орбит центрального иона, которые в отсутствие этих электрических полей эквиваленты. (Эта теория получила название теории кристаллического ноля [164] в применении к неорганической химии эта теория была подробно исследована в монографии [165].) [c.524]

    Вь1сокомолекулярные нормальные алкань 1 в обычных условиях, начиная с гексадекана представляют собой твердые вещества кристаллической структуры с температурой плавления 16-95 °С. При низких те шерат> рах алканы в виде кристаллов сцепляются друг с другом и образуют надмолекулярную структуру под действием дисперсионных сил, возникающих при взаимном обмене электронами между молекулами. В результате действия адсорбционных сил, часть жидкой фазы среды ориентируется вокруг ассоциированных кристаллов и образует сольватные оболочки различной толщины, В ячейках между сцепленными кристаллами включается часть дисперсионной среды (масел) и образованная система приобретает структурную прочность. [c.22]

    Бутылки для молока обычно покрывают толстым слоем парафина, так как кроме водоотталкивания требуется также механическая прочность, а упаковка для замороженных продуктов обычно пропитывается более тш ательно. Кристаллический парафин составляет основную массу продукта, используемого для покрытия бумаги, но в настояш ее время широко используется смешение его с церезином и даже с другими добавками, такими как полиэтилен для получения желаемых свойств. Например, обычный парафин слишком хрупок при низких температурах, поэтому для придачи гибкости к нему примешивают мягкий церезин, получая продукт, пригодный для изготовления тары для замороженных продуктов. [c.531]

    Исследование процесса кристаллизации модифицированного полиизопрена (каучука СКИ-ЗМ) дилатометрическим методом [14, с. 109—127] показало, что введение даже небольшого количества полярных атомов и групп (до 1,5%) снижает скорость кристаллизации. В то же время модификация полиизопрена структурирующим агентом нитрозаном К вследствие возникновения слабых химической и физической сетки в определенных условиях способствует ускорению кристаллизации полиизопрена. Действительно, в дальнейшем при рентгенографическом изучении кристаллизации при растяжении наполненных смесей НК, СКИ-3 и СКИ-3, модифицированного различными функциональными группами, было показано [21], что сажевые смеси на основе каучука СКИ-3 с функциональными группами при растяжении на 300—400% обнаруживают кристаллические рефлексы, аналогичные наблюдаемым для натурального каучука, в то время как смеси на основе каучука СКИ-3 не обнаруживают кристаллических рефлексов при растяжении до 1000%. Температура плавления кристаллитов модифицированного каучука СКИ-ЗМ составляет 50—60 °С (в зависимости от метода модификации), т. е. ниже, чем у кристаллитов натурального каучука (65°С), вследствие большей дефектности. Это исследование ярко иллюстрирует роль кристаллизации в возникновении когезионной прочности. Имеется четкая связь степени кристаллизации и прочности ненаполненных сополимеров этилена и пропилена в зависимости от содержания пропилена [22]. [c.234]

    Следовательно, образование кристаллических структур при растяжении невулканизованных наполненных смесей на основе модифицированного полиизопрена высокой стереорегулярности (СКИ-ЗМ), рост когезионной прочности смесей на основе модифицированного полиизопрена меньшей стереорегулярности (СКИЛМ) позволяют сделать вывод, что некоторое нарушение регулярности строения макромолекул, вносимое модификацией, компенсируется возникновением при растяжении большей упорядоченности всей деформируемой системы в некотором отношении эта упорядоченность более эффективна. [c.234]

    Полиуретаны на основе кристаллизующихся полиэфиров имеют наибольшее сопротивление разрыву. Высокая механическая прочность их связана со способностью кристаллизоваться и ориентироваться при деформировании. Поэтому естественно, что при сопоставимой плотности энергии когезии прочность кристаллических (или потенциально способных кристаллизоваться при деформировании) полимеров всегда существенно выше, чем аморфных эластомеров. Однако попытки найти связь между температурой плавления кристаллических полиуретанов и такими свойствами, как сопротивление разрыву и раздиру оказались неудачными (табл. 4). Вероятно, объяснение этому факту следует искать в том, что на повышение прочности оказывает влияние только лишь кристаллизация, которая развивается непосредственно в процессе деформирования эластомера. Наглядной иллюстрацией сказанного является сравнение свойств полиуретанов на основе полидиэтилен- и полиэтиленадипинатов последние кристаллизуются уже при растяжении на 50%. [c.535]

    Прочность металлов в среднем на два порядка меньше теоретической прочности бездефектного кристалла сТтеор (сгтеор 0,1 Е). Такое различие обусловлено тем, что термодинамически вероятно наличие в металле достаточно высокой плотности дефектов кристаллического строения еще до деформации. Пластичность - как свойство подвергаться остаточному формоизменению - реализуется при деформации путем скольжения (трансляционного и зернограничного) и двойникования структурных элементов. Причем процесс скольжения не является результатом одновременного смещения атомов соседей. Процесс скольжения осуществляется путем последовательного смещения отдельных групп атомов в областях с искаженной решеткой. Нарушение кристаллической ре-ше йси означает, что их атомы выведены из положения минимума потенциальной энергии. Поэтому для их смещения требуется меньше энергии и напряжения. Наиболее распространенными дефектами кристаллической решетки являются линейные дефекты - дислокации (винтовые и краевые). Под действием приложенных напряжений про- [c.77]

    Осажденные гелевые катализаторы. Отличительной особенностью осажденных катализаторов является, во-первых, то, что в основу техно.логии их приготовления положен метод соосаждения активных составляющих катализатора, а, во-вторых, то, что в составе катализатора отсутствует носитель, т. е. инертное твердое вещество, образующее самостоятельную фазу, на поверхность которого наносят активные составляющие катализатора. Соосаждение составных компонентов катализатора приводит к образованию либо монолитной гелеббразной структуры, которой присуща механическая прочность, либо кристаллических осадков или дробленых частиц аморфной структуры, требующих дальнейшей обработки для превращения их в прочные гранулы катализатора. [c.176]

    Осажденные формованные катализаторы. Если по своим физикохимическим свойствам осаждаемый катализатор не образует монолитного геля или имеет кристаллическую структуру, или, наконец, если структура монолитного геля нежелательна, ввиду значительного внутридиффузиопного торможения проводимой реакции, осаждение катализатора ведут обычными методами. Полученные осадки отфильтровывают от маточного раствора и затем промывают. При использовании в качестве реагентов соединений, образующих в виде побочных продуктов термически нестойкие соли, например нитрат аммония, стадия промывки может быть или совсем исключена, или проведена не полностью. Дальнейшая технология зависит от природы осадка и требований к прочности катализатора. В редких случаях (при проведении контактных реакций в жидкой фазе) осадок размалывают и катализатор применяют в виде порошка. [c.179]

    Изучение влияния содержания окиси кремния на свойства промышленных алюмокобальтмолибденовых и алюмоникельмолибдено-вых катализаторов показало, что введение 3102 увеличивает объем и средний радиус пор, повышает в 1,5 раза механическую прочность катализатора. При этом возрастают расщепляюш,ая и изомеризующая активности катализаторов У Большое значение в настоящее время уделяется катализаторам на цеолитной основе. Эти катализаторы обладают высокой активностью и хорошей избирательностью, а кроме того позволяют часто проводить процесс без предварительной очистки сырья от азотсодержащих соединений. Содержание в сырье до 0,2% азота практически не влияет на их активность Применение цеолитных катализаторов часто позволяет проводить процесс при более низкой температуре Повышенная активность катализаторов на основе цеолитов объясняется более высокой концентрацией активных кислотных центров в кристаллической структуре по сравнению с аморфными алюмосиликатными катализаторами [c.322]

    Т. Особенности кристаллического состояниа. Слово кристалл всегда ассоциируется с представлением о многограннике определенной формы. Однако кристаллические вещества характеризуются не только этим признаком. Основной особенностью кристаллических тел является их анизотропия, или векториальность свойств — неодинаковость свойств кристалла (прочность на разрыв, теплопроводность, сжимаемость и др.) в разных направлениях. [c.137]

    Селен известен в нескольких модификациях. Наиболее устойчив серый селен, т. пл. 219°С, т. кип. 685 °С, его кристаллическая решетка состоит из спиральных цепей, расположенных параллельно друг другу. Менее устойчивы красный селен (две разновидности в структуре кольца See) и черный стекловидный селен (в структуре перепутанные зигзагообразные цепи). Серый и стекловидный селен являются полупроводниками. В паре селена имеют место равно1зесия между молекулами 8е . (л = 8-н1), подобные существующим в паре серы, но в соответствии с меньшей прочностью Se (г) они смещены вправо. [c.456]

    Солеобразные они отличаются высокой прочностью (для СаНа A G = 136 кДж/моль). Это кристаллические соединения, содержащие легкополяризуемый анион Н , отличающиеся высокой [c.466]

    Квантовомеханическое исследование процесса взаимодействия молекулы гзза с поверхностью кристалла показывает, что в зависимости от вида молекулы и кристаллической решетки такое взаимодействие может быть различным как по характеру образующейся связи и прочности ее, так и по изменению свойств молекулы в адсорбированном состоянии. В образовании связи могут принимать участие электроны или дырки кристаллической решетки ( 55). Связь может образоваться не только за счет имевшихся свободных валентностей поверхностных атомов, но и за счет валентностей, возникаюш,их при взаимодействии поверхностных атомов с молекулой газа. В хемосорбированном состоянии молекула может вновь оказаться в валентно насыщенном состоянии или перейти в состояние радикала или в ионо-радикальную форму. Во многих случаях за время пребывания молекулы в хемосорбированном состоянии может изменяться характер связи ее с поверхностью кристалла, состояние ее и энергия связи. Для полупроводниковых адсорбентов введение донорных или акцепторных примесей, вызывая изменение в соотношении энергетических уровней электронов в кристалле, может влиять ыа характер хемосорбционных процессов. Подобное же влияние могут оказывать и различные структурные дефекты поверхности. [c.371]

    Галогениды алюминия А1Хз—белые кристаллические веще ства. уХлорид, бромид и иодид алюминия резко отличаются по свойствам от фторида алюминия они легко летучи, в расплаве, парах и некоторых органических растворителях димериэованы с образованием молекул А Хе, имеющих в газообразном состоЯ НИИ конфигурацию сдвоенного тетраэдра с общим ребром прочность димерных молекул падает от хлорида алюминия к иодиду. [c.19]


Смотреть страницы где упоминается термин Кристаллическая прочность: [c.223]    [c.393]    [c.445]    [c.453]    [c.468]    [c.538]    [c.180]    [c.609]    [c.119]    [c.157]    [c.312]    [c.512]    [c.35]    [c.10]    [c.22]    [c.234]    [c.192]    [c.193]   
Физическая и коллоидная химия (1960) -- [ c.58 ]




ПОИСК







© 2025 chem21.info Реклама на сайте