Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детекторы по фосфору

    При помощи искусственного радиоизотопа технеция-99т удается избежать хирургического вмешательства при обнаружении опухолей мозга. Опухоль -область слишком быстрого роста клеток. Элемент концентрируется в месте более быстро растущих клеток. Система детекторов радиации вокруг головы пациента способна точно определить местоположение опухоли. Фосфор-32 можно использовать аналогично для обнаружения рака костей. [c.350]


    Термоионный детектор. Принцип действия термоионного детектора состоит в том, что соли щелочных металлов, испаряясь в пламени горелки, селективно реагируют с соединениями, содержащими галогены или фосфор. В отсутствие таких соединений в ионизационной камере детектора устанавливается равновесие атомов щелочного металла. Присутствие атомов фосфора вследствие их реакции с атомами щелочного металла нарушает это равновесие и вызывает появление в камере ионного тока. [c.189]

    В этом детекторе компонент, выходящий из колонки, после смешения с кислородом или воздухом сгорает в пламени, обогащенном водородом. Для регистрации продуктов применяется фотометрия пламенной эмиссии фосфор- и серосодержащих соединений при длине волны соответственно 526 и 394 нм. Специфичность достигается за счет применения оптических фильтров и такого расположения горелки, которое позволяет экранировать фотоумножитель от пламени горелки. Его чувствительность составляет 10- мг для серосодержащих соединений и 10- —10- мг для фосфорсодержащих веществ. Линейный диапазон 5-10 .  [c.190]

    В настоящее время широкое распространение получили германиевые детекторЫ В них выпрямляющее действие обеспечивается контактом двух германиевых примесных полупроводников, один из которых обладает (например, один с примесью фосфора, другой — бора) /г-проводимостью, а другой — р-проводимостью. [c.521]

    Фосфор помещается в кожухе, имеющем на одном из торцов окно. С помощью этого окна осуществляется контакт его с катодом ФЭУ, причем ФЭУ также помещается в светонепроницаемый кожух, чтобы исключить влияние видимого света. Принципиальные схемы конструкций сцинтилляционных детекторов представлены на рис. 130. [c.338]

    Термоионный детектор проявляет довольно высокую чувствительность и селективность определения соединений фосфора, азота, мышьяка, галогенов (кроме фтора), олова и серы. Наибольшее отношение сигналов ДТИ к сигналам ДИП наблюдается для соединений фосфора, достигая 10 —10 При этом минимально определяемые содержания этих веществ в исследуемых объектах находятся на уровне 10" %, что соизмеримо с чувствительностью ионизационно-пламенного детектора к углеводородам. Такой результат на первый взгляд кажется парадоксальным, так как ионизационная эффективность фосфорорганических веществ в термоионном детекторе на 2—3 порядка выше, чем углеводородов в ионизационно-пламенном. Однако возможности ДТИ в отношении определения малых концентраций существенно снижаются из-за более высокого уровня шумов, который на 1—2 порядка выше, чем у ДИП. Поэтому минимальное поддающееся обнаружению количество веществ у ДТИ сопоставимо с аналогичным показателем для ионизационно-пламенного детектора. [c.69]


    Выбор измеряемой длины волны определяется характером эмиссионного спектра пламени фосфор- и серусодержащих соединений, имеющего максимум соответственно при 526 и 394 нм. Спектральное выделение этих полос производится интерференционными светофильтрами с шириной полосы пропускания 5— 10 нм. Ширина пропускания светофильтра определяет чувствительность и селективность ПФД. Применение фильтров с более узкой полосой пропускания повышает селективность, но существенно снижает чувствительность детектора, так как интенсивность светового потока пропорциональна квадрату ширины пропускаемой полосы. [c.71]

    Конструкция детектора одноканальная селективность детектора к серусодержащим либо к фосфорсодержащим соединениям обеспечивается применением сменных интерференционных светофильтров с полосой пропускания 394 либо 526 нм соответственно. Визуально фильтр с полосой 394 нм пропускает фиолетовые лучи, а фильтр с полосой 526 нм — зеленые. При выпуске хроматографа в ПФД устанавливается фильтр на серу, а фильтр на фосфор входит в комплект принадлежностей к детектору. [c.130]

    Детектор ионизации пламени с щелочным металлом — термоионный ( натриевый или фосфорный ) (ТИД) — является селективным детектором к соединениям фосфора, азота, мышьяка, галогенов (кроме Р), олова и серы. Действие его основано на увеличении ионизации солей щелочных металлов в пламени водорода при попадании в него элементоорганических соединений, В упрощенном виде механизм ионизации можно представить следующим образом. При введении нейтральных молекул соли щелочного металла в пламя Нг происходит их ионизация, в результате чего резко увеличивается фоновый ток. Анализируемая молекула в пламени водорода разрушается с образованием радикалов с гетероатомами, взаимодействие которых с заряженными комплексами солей щелочных металлов приводит к резкому увеличению скорости образования ионов, что в конечном итоге вызывает дополнительное ионообразование элементоорганических соединений. [c.356]

    Пламенно-фотометрический детектор — селективный детектор иа фосфор и серосодержащие вещества. Принцип действия основан на измерении свечения водородного пламени прн сгорании в нем фосфора и соединений, содержащих серу. Регистрация интенсивности излучения пламени производится следующим образом. Световой поток проходит вначале интерференционный фильтр, который поглощает фоновое излучение пламени, после чего поступает на чувствительный элемент фотоумножителя. Полученный таким образом фототок направляется в электрометрический усилитель и далее на потенциометр. [c.356]

    NPD детектор для определения азота и фосфора [c.22]

    Точность определения элементов в АЭД не очень высокая, относительное стандартное отклонение от 2 до 20%. Несмотря на это, АЭД может быть использован для получения данных об относительном элементом составе. Чувствительность детектора особенно высока для углерода, фосфора и серы. Динамический диапазон значительно меньше, чем, иапример, для ПИД. [c.253]

    Высокоспецифичные детекторы незаменимы в определениях следовых количеств соединений, содержащих определенные элементы или группировки. Особое значение они приобрели в анализах пестицидов, лекарственных препаратов, нефтехимических продуктов и биологических образцов, содержащих галогены, фосфор, серу или азот. Большим преимуществом таких детекторов является то, что они требуют лишь минимальной очистки (удаления мешающих примесей) детектируемых образцов, поскольку такой детектор попросту слеп по отношению к соединениям другого типа. Между тем в большинстве анализов очистка поглощает много труда и времени. [c.431]

    Идентификация отдельных групп соединений возможна с помощью специальных детекторов, имеющих повышенную чувствительность к данным соединениям. Так, кулонометрический детектор, действие которого основано на титровании продуктов сгорания элюата электролитическим бромом, может использоваться для анализа серосодержащих соединений. Электронозахватный детектор имеет высокую чувствительность к фосфор- и галогенсодержащим соединениям, обладающим большим сродством к электрону. [c.124]

    Большие перспективы ГЖХ идентификации ГАС кроются в использовании селективных детекторов, часто позволяющих определять ГАС без их предварительного выделения из углеводородной смеси или при их неполном разделении с другими компонентами. Наиболее интересные в этом отношении спектрофотометрические детекторы, основанные на измерении УФ [163] или ИК [163, 168, 287] поглощения функциональными группами или эмиссии атомами С, К, 3 и др. в вакуумной УФ области [288], при изучении ГАС нефти иока практически не применялись из-за сложности и высокой стоимости аппаратуры. Близкие к последнему типу по принципу действия эмиссионные пламенно-фотометрические детекторы использовались при изучении сиределения сернистых соединений в нефтяных дистиллятах [289, 290]. Азотистые компоненты нефтяных фракций определялись с помощью детектора Холла [291 ] и особо чувствительного к соединениям фосфора и азота термоибниого детектора (ТИД) [292]. Низкая чувствительность ТИД к сероароматическим соединениям использовалась для селективного обнаружения тиофеновых производных по их характерным отрицательным пикам на хроматограммах [293]. [c.35]


    Микрокулонометрический детектор является интегральным. Он обладает высокой чувствительностью и селективностью к веществам, содержащим хлор, серу, азот или фосфор. В частности, высокой чувствительностью обладает конструкция, предложенная С. И. Кричмаром и В. Е. Степаненко 56]. [c.112]

    В пламенно-фотометрическом детекторе, предложенном Броуди и Чанеем [57], компонент, выходящий из колонки, после смешения с кислородом или воздухом сгорает в пламени, обогащенном водородом. Для регистрации продуктов сгорания применяется фотометрия пламенной эмиссии фосфор- и серусодержащих соединений при [c.112]

    Пламенно-фотометрический детектор (ПФД). Этот детектор особенно чувствителен на соединения, содержащие серу и фосфор. Принцип действия основан на измерении свечения водородного пламени при сгорании в нем соединений, содержащих фосфор н серу. В отличие от ДИПа, пламя которого обогащено кислородом, в ПФД пламя обогащено водородом. ПФД представляет собой ячейку ДИПа в сочетании с оптической схемой измерения светового потока. Световой поток после интерференционного фильтра поступает на чувствительный элемент фотоумножителя. Полученный фототок поступает в электрометрический усилитель, а затем на самопишущий потенциометр. [c.61]

    Цвет-2000 — газовые аналитические лабораторные хроматографы, предназначенные для качественного и количественного аналнза веществ с температурой кипения до 450°С. Хроматографы этой серии снабжены пятью детекторами пламенно-ионизационным, электронозахватным, термоионным (на фосфор и азот), пламенно-фотометрическим и катарометром. Температурный режим — изотермический и программирование температуры от —100 до 400°С. Колонки аналитические стеклянные и стальные, а также стеклянные капиллярные. Для хроматографа характерна максимальная степень автоматизации благодаря наличию нстроенной ЭВМ. [c.63]

    Индий — мягкий (мягче свинца) серебристо-белый металл, пластичный и плавящийся при сравнительно невысокой (156,4°С) температуре. Подобно галлию, индий образует с большим числом металлов легкоплавкие сплавы. Сплав индия с галлием находится при комнатной температуре (16°С) в жидком состоянии. Соединения его с мышьяком, фосфором, сурьмой являются полупроводниками. По химическим свойствам индий также сходен с галлием. Индий в форме антимонида 1п8Ь применяют для изготовления детекторов инфракрасного (теплового) излучения. Это соединение сильно изменяет свою электрическую проводимость под влиянием длинноволнового излучения. Введение микродоз индия в германий приводит к появлению у германия дырочной проводимости (проводимость р-типа). Поэтому контакт германий чистый — германий с примесью индия представляет собой так называемый п—р-пере-ход на этой же основе легко получить и р—м—р-переходы, применяемые в транзисторах. [c.160]

    В последнее время все более широкое распространение получают специфические детекторы. Детектор электронного захвата в основном применяется для анализа малых примесей веществ, содержащих атомы с большим сродством к электрону, такие, как галогены, кислород, азот. При ионизации газа-носителя в детекторе образуется большое количество электронов, которые взаимодействуют с анализируемым веществом, что проявляется в уменьшении начального тока детектора. Чувствительность детектора зависит от природы и числа атомов, обладающих сродством к электро ну. Термоиопный детектор основан на ионизации в пламени солей щелочных металлов. Детектор хорошо анализирует соединения, содержащие фосфор. П л а м е н н о - ф о р-метрическнй детектор основан на измерении свечения водородного пламени. Детектор весьма чувствителен к фосфору и серусодержащим соединениям. [c.300]

    Селективный детектор этого типа на фосфор- и серусодержащие вещества предложен для использования в хроматограф1-[и в 1966 г. Принцип действия основан на измерении свечения видородного [c.70]

    Пламенно-фотометрический детектор обладает низким пределом детектирования фосфор- и серусодержащих веществ, значение которого для лучпшх конструкций находится на уровне 10" мг/с для серусодержащих и 10"" м1,/с дли фосфорсодержащих веп еств Селективность относительно углеводородов для серу- и фосфор- [c.72]

    В детекторе по электронному захвату газ-носитель (азот) ионизируется под воздействием потока частиц от радиоактивного источника. Концентрацию образующихся электронов измеряют с помощью системы электродов, подобной использующейся в пламенно-ионизационном детекторе. При попадании в детектор вещества, захватывающего свободные электроны, ток между электродами уменьшается пропорционально концентрации этого вещества. Особенно высока чувствительность детектора к соединениям, содержащим галогены и фосфор, а также к металлор-ганическим соединениям. К углеводородам (кроме ароматических полиядерных), спиртам, аминам и многим другим соединениям этот детектор нечувствителен. Высокую чувствительность (до 10 з г) электроннозахватного детектора используют при определении микроколичеств галоген- и фосфорсодержащих пестицидов. [c.620]

    Если снять хроматограммы одной и той же пробы на детекторе, показания которого пропорциональны массе вещества, и на детекторе, обладающем селективной чувствительностью к отдельным веществам, то можно определить специфические поправочные коэффициенты этих двух детекторов для отдельных хроматографических пиков. Сопоставление этих факторов с табличными значениями позволяет сделать вывод об имеющихся функциональных группах и гетероатомах. Для капиллярных колонок может быть с успехом использована комбинация пламенно-ионизационного детектора, чувствительность которого определяется числом атомов углерода, содержащихся в молекуле, с электронозахватным детектором (ср. Оке, Хартман и Димик, 1964). В сочетании с капиллярными колонками в качестве специфических детекторов применяли фосфорный и галогенный пламенно-ионизационные детекторы (Кармен, 1964) и кулонометрический детектор, реагирующий на фосфор, серу и галогены (Коулсон и Каванаг, 1959 ср. также Пирингер, Татару и Паскалау, 1964). [c.356]

    В заключение необходимо отметить, что хроматография является не только эффективным методом анализа и очистки, но также и методом исследования адсорбционных процессов и систем адсорбент — основной компонент — микроиримеси. Известен хроматографический метод определения изотерм адсорб ции и теплот адсорбции, метод определения величин поверхности, коэффициентов активности и т. д. Даже в тех случаях, когда чу ствительность детектора не позволяет работать с ми-кронримегями, прогнозирование возможности очистки может быть сделано при исследовании макроконцентраций, [Юскольку времена удерживания при линейных изотермах не зависят от исходной концентрации. Таким путем в работе [40] был подобран сорбент для очистки СгеСЦ от фосфора — силикагель с о-нитроанизолом. [c.179]

    Термоионпий детектор (ТИД). ТИД используется как высок6специф1 ныЙ детектор для соединений, содержащих азот и фосфор (табл. 5.2-1). Его чувствительность к этим элементам примерно в ЮООО раз вьппе, чем к углероду. ТИД—пламенный детектор с безводородной газовой смесью. Между горелкой и собирающим электродом на платиновой проволоке закреплена стекля о ая чах тица, содержащая рубидий. Вокруг нее формируется плазма, в которой со- [c.252]

    Пламенно-фотометрический детектор (ПФД). ПФД—простейший фотометрический детектор для селективного детектирования фософра и серы. Органические соединения частично сгорают в водородно-воздушном пламени, при этом с помощью фотоумножителя измеряется эмиссия при 526 нм для фосфора и п ж 394 нм для серы. [c.253]

    В 1986 г. управление по контролю за качеством пищевых и фармацевтических продуктов запретило использование сульфитирующих агентов в качестве консервантов свежих фруктов и овощей ввиду их токсичности. Для определения серы в пищевых продуктах в качестве стандартного использовали метод Монье — Уильямса. Этот метод является весьма трудоемким и занимает много времени. Недавно в работе [22] был предложен надежный, точный и быстрый метод определения сульфитов в пищевых продуктах. В этом методе использовали КГХ, причем анализ проводили в равновесной паровой фазе. Как видно из хроматограммы, приведенной на рис. 8-27, использование пламенно-фотометрического детектора (в режиме определения фосфора) позволяет определять сульфитирующие агенты в свежем салате и креветках в на уровне 10 %. [c.121]

    При определении пестицидов в соответствии с методами Управления по охране окружающей среды в настоящее время используются газохроматографические детекторы, селективные по отношению к галогенам, сере, азоту и фосфору. Однако электроноза-хватный детектор и детектор по электропроводности не позволяют дифференцировать Р, С1 и Вг. В пламеннофотометрическом детекторе может наблюдаться гашение. Сигнал этого детектора нелинеен. Пестициды содержат различные гетероатомы, поэтому их было бы целесообразно анализировать методом ГХ с атомно-эмиссионным детектором и микроволновой гелиевой плазмой. Используя этот метод, можно получить полные элементные профили и/или детектировать индивидуальные элементы в молекулах. Иа рис. 8-34 и 8-35 представлены специфические хроматограммы элементов, входящих в состав диазинона и арохлора соответственно. Одновременно с этим определяют С, 8 и М, применяя для продувки кислород и водород. [c.129]

    В ионизованном газе-носителе (N3, Не) в качестве отрицательно заряженных частиц присутствуют только электроны. В 1фисутствии соединения, которое может захватывать электроны, ионизационный ток детектора уменьшается. Этот детектор дает отклик на соединения, содержащие галогены, фосфор, серу, нитраты, свинец, кислород на большинство углеводородов он не реагирует. [c.305]

    Для многих современных детекторов характерны высокая чувствительность и высокая селективность. Примеры тому термоионизационный детектор (ТИД), специфичный к азоту и фосфору, детектор электронного захвата (ДЭЗ), применяемый в ГХ, или ставшие обычными в ЖХ флуориметрические и электрохимические детекторы. Соединение этих детекторов с хиральными хроматографическими колонками приведет к дальнейшему расширению области применения аналитических разделений оптических изомеров. Одна из очевидных причин этого — уменьшение риска случайного перекрьшания пиков в сложных образцах, приводящего к ошибочным результатам при определении энантиомерного состава. [c.235]


Смотреть страницы где упоминается термин Детекторы по фосфору: [c.301]    [c.262]    [c.110]    [c.341]    [c.71]    [c.106]    [c.192]    [c.173]    [c.314]    [c.407]    [c.91]    [c.432]    [c.433]    [c.190]    [c.106]    [c.229]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.91 , c.92 ]




ПОИСК







© 2024 chem21.info Реклама на сайте