Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение фосфора кремнии и его соединения

    Фотометрический метод анализа. Измеряют оптическую плотность растворов комплексных соединений, образующихся при взаимодействии определяемых ионов с неорганическими или органическими реагентами. Так, для определения ионов железа к раствору прибавляют роданид калия или аммония оптическая плотность раствора образовавшегося роданида железа пропорциональна количеству железа в растворе. Кремний, фосфор или мышьяк можно определить в виде гетерополикислот Н4[51(МозОю)4], Нз[Р(МозОю)4] или Нз[АзХ X (МозОю)4 , окрашенных в желтый цвет. [c.24]


    Широко применяемой калориметрической методикой определения энтальпий образования является сожжение вещества в калориметрической бомбе в атмосфере кислорода. По этой методике были определены, например, энтальпии образования многих оксидов (углерода, кремния, бора, фосфора, серы, магния, алюминия, титана, кобальта и др.) и энтальпии образования ряда соединений, таких, как, например, карбиды, фосфиды, нитриды, фазы переменного состава и т. д. Особенно широко она [c.32]

    Мешающие вещества. Имеется много различных данных о влиянии посторонних элементов на определение фосфора, кремния и Мыщьяка в виде ГПК. Методы устранения влияния железа и меди указаны выше. Мешают определению ниобий и титан, которые образуют более сложные соединения, содержащие наряду с фосфором, кремнием или мышьяком также ниобий или титан. Эти комплексы сильнее поглощают свет в видимой части спектра, чем простые ГПК- Влияние титана и ниобия не удается устранить [c.76]

    В органической химии в соответствии с общим определением реакциями восстановления принято называть реакции, протекающие с уменьшением суммарной степени окисления атомов углерода или гетероатомов реакционного центра субстрата. Органические соединения восстанавливаются в процессах присоединения по кратным связям водорода, металлов, гидридов металлов и гидридов электроположительных металлоидов (бора, кремния, фосфора), замещения электроотрицательного гетероатома, гетероатомной или углеродной группировки на атом водорода или металла, элиминирования электроотрицательных атомов или гетероатомных групп, связанных с атомами реакционного центра через электроотрицательные атомы, и сочетания с предшествующим (или одновременным) разрывом связей между атомами углерода или гетероатомами и атомами более электроотрицательных элементов. Отдельные примеры таких реакций приведены ниже. [c.10]

    Рекомендованные В. Г. Горюшиной и другими (в Гиредмете) фотометрические методики определения микропримесей основаны главным образом на использовании известных ранее высокочувствительных и избирательных цветных реакций, образуемых примесными элементами с различными органическими и — реже — неорганическими реагентами. В качестве примера можно назвать дитизон, использованный для определения серебра, золота, ртути и других элементов, диэтилдитиокарбами-нат свинца — для меди, а-фурилдиоксим — для никеля, батофенантро-лин — для железа. Большое значение имели реакции образования восстановленных гетерополикислот, используемые при определении фосфора, мышьяка и кремния, или реакция образования роданида железа, удобная для определения данной примеси в некоторых материалах высокой чистоты (галлий, индий, их соединения и др.). Чувствительность всех этих методов в фотометрическом или спектрофотометрическом вариантах лежит, как правило, на уровне 10 %. [c.12]


    Другим направлением развития аналитической термооптической спектроскопии является разработка фотохимических методик. В этом случае, фотометрируемую ( рму определяемых соединений получают непосредственно в процессе эксперимента в результате фотохимической реакции под действием лазерного излучения, одновременно индуцирующего термооптический элемент. Разработаны фотохимические термооптические методики определения фосфора и кремния в виде гетерополи-соединеннй с пределами обнаружения 10" —Ю г/мл. Фотохимическую термооптическую спектроскопию используют дпя определения термоди- [c.340]

    Результаты одновременного определения бора, фосфора, кремния или галогена в элементоорганических соединениях [c.205]

    Среди других ядер наиболее важны и у которых ядерный спин равен 1/2. ЯМР этих ядер в принципе не отличается от ЯМР других ядер применение его весьма разнообразно. Химические сдвиги резонансных сигналов кремния довольно малы, и интерпретация их нередко требует учитывать связи, образованные с участием -орбиталей. Знание химических сдвигов фосфора и его констант спин-спинового взаимодействия крайне полезно для определения структуры органических соединений фосфора, а также для исследования многих типов дифосфатных и полифосфатных ионов [c.89]

    Широкое применение методов определения фосфора и кремния привело к многочисленным исследованиям и предложению множества методик. Результаты применения различных методов, в общем, мало отличаются друг от друга, в больщинстве случаев выбор восстановителя не имеет значения. Только при анализе черных металлов необходимо принимать во внимание присутствие больших количеств железа(П1). В связи с этим применение некоторых восстановителей менее удобно. Так, при работе с хлоридом олова(П) необходимо вводить его в избытке для того, чтобы полностью восстановить железо(П1) в то же время избыток олова (И) может привести к указанным выше осложнениям. Некоторые органические восстановители образуют с железом(П1) окрашенные соединения или окисляются до окрашенных продуктов. Поэтому для определения в черных металлах фосфора и кремния в виде синих ГПК чаще в качестве восстановителя применяют сульфит. Применение сульфита в присутствии железа (И) в строго определенных условиях кислотности дает хорошие результаты. [c.76]

    Метод окисления органических веществ концентрированной серной кислотой применяют при определении фосфора, мышьяка, кремния и металлов. Например, этим методом очень легко разлагают кремнийорганические соединения. Разработаны методы, позволяющие проводить экспресс-анализ. При разложении по Кьельдалю мышьяк и селен теряются частично, а галогены — полностью мышьяк можно собрать в дистилляте и затем определить [5.1137]. Следует иметь в виду, что некоторые органические соединения, например хлорат и иодат анилина, могут взрываться при действии концентрированной серной кислоты [5.1138]. [c.212]

    Резину после экстракции ацетоном минерализуют концентрированной серной кислотой (см. разд. III.2.3). После отделения осадка и определения двуокиси кремния определяют в фильтрате фосфор и бор фосфор — по реакции образования фосформолиб-деновой гетерополикислоты и восстановления ее до молибденовой сини (см. разд III.3.2), бор — по окрашиванию пламени борнометиловым эфиром. Для определения бора аликвотную часть раствора 7 помещают в фарфоровый тигель, упаривают раствор до объема 2—3 мл, добавляют 3—5 мл метилового спирта, смесь перемешивают стеклянной палочкой и зажигают. В присутствии соединений бора края пламени окрашиваются в зеленый цвет. [c.123]

    Трудности должны встретиться при анализе соединений, содержащих бор, фосфор, кремний и некоторые другие элементы, образующие трудновосстанавливаемые оксиды. Ряд публикаций посвящен определению кислорода в элементоорганических соединениях, содержащих бор [227], фтор [222, 228—232], фосфор [222, 225, 233, 234], ртуть [235, 236], щелочные и щелочноземельные металлы [237], другие металлы [222, 238]. [c.138]

    Для анализа реакционноспособных и нестабильных соединений используют твердый носитель на основе политетрафторэтилена. Несмотря на химическую стойкость к агрессивным соединениям, до недавнего времени этот носитель использовали редко из-за недостаточной механической прочности и относительно низкой эффективности. Однако в последнее время разработан способ получения инертного носителя на основе фторопласта 4Д, который по своим качествам не уступает зарубежным тефлоновым носителям [361. Фторопластовый носитель для газо-жидкостной хроматографии отличается устойчивостью к агрессивным соединениям и по стабильности сравним с диатомитовыми носителями [371. Носители полихром-1 и полихром-2 получают прогревом фторопласта-4Д в строго определенных условиях. Рабочая температура этих носителей 200—250°С их используют для разделения сильнополярных соединений, а также для разделения галогенидов металлов и окси-галогенидов фосфора, кремния, германия, стронция, [c.30]


    Мешают определению (без экстракции комплексной кислоты) следующие ионы кремний в больших концентрациях, железо(III) в присутствии хлорида или сульфата, восстановители, хром (VI), мышьяк(V) и цитрат. Висмут(III), торий(IV), хлорид н фторид влияют на развитие окраски. Кремний можно удалить при кипячении раствора с концентрированной H IO4. Железо(III) можно связать в комплекс с фторидом, избыток которого удаляют введением борной кислоты. Борную кислоту можно использовать и для связывания фторидов, присутствующих в исходном анализируемом растворе. С использованием экстракции комплексной гетерополикислоты был разработан метод определения фосфора. Метод был применен для анализа практически всех фосфорсодержащих материалов стали [139, 140J, железных руд [141], алюминиевых, медных и никелевых сплавов с белыми металлами [142], воды [143, 144] и удобрений [145—147]. Работы по анализу удобрений [145—147] посвящены автоматизации очень точного метода определения фосфора с применением автоматических анализаторов. В анализаторы был заложен метод прямого измерения светопоглощения, а не дифференциальный вариант, который обычно используют для повышения точности определения. Полученные результаты позволяют заключить, что абсолютная ошибка измерения оптической плотности в интервале О—1,2 единицы не выше ошибки самого измерительного прибора (0,001 единицы поглощения). Следует отметить, что описанный метод по точности превосходит метод с применением молибдофосфата хинолина и, кро.ме того, обладает еще одним преимуществом — простотой выполнения определения. В биохимии метод применяли для определения фосфата в присутствии неустойчивых органических фосфатов [148] и неорганического фосфата в аденозинтрифосфате [149]. Метод был использован для анализа фосфатных горных пород [150]. В органическом микроанализе метод применяют после сожжения органических соединений в колбе с кислородом [151, 131]. [c.461]

    Тот простой факт, что грибы способны поглощать кремнезем, когда к такой культуре добавляют растворимые силикаты, может свидетельствовать только о том, что образующийся коллоидный кремнезем адсорбируется на поверхности клеток. Однако то обстоятельство, что поглощение кремния ускоряется в отсутствие кислородных соединений трехвалентного фосфора, является подтверждением определенной роли, которую кремний способен играть в подобном метаболизме [4а], [c.1011]

    Все химические данные, а также спектры поглощения указывают, что центральный атом определяет все свойства двенадцати окружающих его молибдат-ионов. Это видно из спектра поглощения желтая окраска обусловлена сдвигом всей полосы поглощения молибдата к длинноволновой части спектра. Далее, резко изменяется растворимость различных соединений так, фосфат аммония и молибдат аммония хорошо растворимы в воде, тогда как фосфоромолибдат аммония малорастворим. Существенно изменяется отношение к органическим растворителям. Изменяются даже такие характерные свойства, как отношение к восстановителям. На восстановлении ГПК до синих соединейий основан ряд методов определения фосфора, кремния и других центральных атомов свободный молибдат в этих же условиях почти не восстанавливается. Наконец, хорошо известен индивидуальный характер ГПК, т. е. зависимость свойств от центрального атома. Так кремнемолибденовая кислота значительно более устойчива к действию различных (оксалат, тартрат и др.) комплексонатов и кислот по сравнению с фосфорномолибденовой кислотой. Необходимо подчеркнуть, что образование кремнемолибденовой кислоты происходит п и меньшей кислотности, чем фосфорномолибденовой кислоты. Однако это связано не с устойчивостью кремнемолибденовой кислоты, а со свойствами кремневой кислоты, которая в кислых растворах сильно полимеризована (сМ.ниЖе). [c.259]

    Значение гетерополикомплексов для фотометрического определения фосфора, кремния и ряда других элементов хорошо известно (см. гл. 12, 6). Теория строения гетерополикомплексов встречает большие трудности вследствие ряда необычных свойств этих соединений. Необычным является прежде воэго большое число координированных групп. [c.358]

    Наиболее чувствительным методом определения фосфора является экстракционный метод, в котором применена реакция образования соли фосфорномолибденовой кислоты с основными красителями. Этот метод еще удобен и тем, что в условиях определения фосфора небольшие количества кремния не образуют подобного соединения и не мешают определению фосфора. Если соединение молибдата с органическим красителем или сам краситель экстра-, гируется неводным растворителем, их можно отделить от соединения фосфоромолибдата с тем же. красителем промывкой экстракта разбавленной азотной кислотой или раствором перманганата калия [36]. Молярные коэффициенты поглощения основных красителей достаточно высокие, часто достигают 10 , а 1 моль фосфорномолибденовой кислоты может присоединять до 3 молей основного красителя, что приводит к резкому повышению чувствительности метода. [c.98]

    При определении фосфора в кремнийфосфорорганических соединениях применяют [194] низкотемпературный (охлаждаемый) фульгуратор (рис. 62). Пробу растворяют в органическом растворителе (эфире, ацетоне, гептане, метаноле, нормальном пропаноле, толуоле) и наливают в сосуд 2 фульгуратора. С целью уменьшения испарения и предупреждения воспламенения пробы ее охлаждают до и во время экспозиции. В зависимости от температуры вспышки растворителя для охлаждения применяют следующие смеси ацетон — сухой лед метанол — сухой лед лед — вода и холодную воду. Спектр возбуждают высокочастотной искрой от генератора ДГ-2 и регистрируют на спектрографе ИСП-28. Для приготовления эталонов в растворитель вводят различное количество фосфора в форме дибутил-фосфида и кремния в форме тетраэтоксисилана. В качестве внутреннего стандарта используют серу, введенную в форме тиодигликоля. [c.150]

    Искомую составную часть взвешивают в другой форме чем та, в которой желательно выразить результат проведенного определения, например определение фосфора заканчивают взвешиванием прокаленного осадка Mg2P207 или, определяя кремний в стали, заканчивают определение также взвешиванием 5102, как при анализе минерала, но результат здесь должен быть выражен в виде процентного содержания элемента (31). Иногда взвешиваемое вещество совсем не содержит того элемента, который определяют. Так, при определении азота в соли аммония иногда осаждают аммоний в виде (КН4)зР1С15, прокаливанием этого соединения выделяют платину, которую и взвешивают. По массе платины рассчитывают процентное содержание азота в анализируемой соли. [c.460]

    Гетерополикомплексами (ГПК) называют группу соединений, состояш их из малого центрального атома, чаще всего Р, 51 или других, и координированных ионов, способных к полимеризации. Для фотометрического анализа наиболее важны ГПК, содержащие в качестве координированных групп полиионы молибдата. Центральным атомом окрашенных ГПК могут быть фосфор, кремний, мышьяк, а также бор, германий и некоторые другие 28—30]. Для определения мышьяка, германия и т. п. имеется немало других более чувствительных и более избирательных методов однако для определения фосфора и кремния образование их ГПК имеет чрезвычайно важное значение. Поэтому ниже главное внимание уделяется этим соединениям. [c.258]

    Атомно-абсорбционную спектроскопию используют для анализа многих элементов, но ее нельзя применить в прямом варианте метода для определения следовых концентраций фосфора, мышьяка или кремния из-за того, что резонансные линии этих элементов лежат в далекой ультрафиолетовой области, или за-за образования тугоплавких соединений, которые полностью подавляют диссоциацию в пламени. Прямой метод был описан Киркбрайтом и Маршаллом [169], которые использовали пламя азот — оксид азота(I)—ацетилен и микроволновый безэлектродный незаряженный источник возбуждения фосфора. Чувствительность определения 4,8 и 5,4 мкг/мл Р при длинах волн 177,5 и 178,3 соответственно. Атомно-абсорбционную спектроскопию можно использовать для косвенного определения фосфора по молибдену, входящему в состав молибдофосфорной кислоты. Описан основанный на этом принципе метод анализа [170], но определению мешают мышьяк и кремний. [c.467]

    Оба соединения образуются в кислой среде оптимальная кислотность для молибденофосфорной гетерополикислоты 0,85 н., а для молибденокремниевой — 0,02 н. Различную устойчивость этих соединений используют для определения фосфора и кремния при совместном присутствии. [c.132]

    Объемные методы онределення фосфора применяются как маркировочные для онределенпя выше 0,02% фосфора. Определению фосфора весовыми и объемными методами мешают соляная (>10%), серная (>10%) и фтористоводородная (>5%) к-ты, а также титан, цирконий, четырехвалеитный ванадий, большие количества кремния, вольфрама, ниобия, мышьяка п органич. соединения. [c.251]

    Как было сказано выше, для колориметрического определения нона X последний переводят в окрашенное соединение, обычно комплексного характера. Так, например, железо, кобальт, молибден и вольфрам определяют часто в виде роданидных комплексов. Титан и ванадий определяют в форме комплексов с перекисью водорода. Медь, цинк и многие другие цветные металлы определяют в виде комплексов с дифенилтиокарбазоном фосфор, кремний — в виде комплексных гетераполикнслот. [c.12]

    На оптическую плотность растворов синего комплекса практически не влияют небольшие вариации избытка молибдата в растворе, количества восстановителя и количества нейтральных солей, получающихся при минерализации органических соединений, незначительные колебания продолжительности образования желтого комплекса и другие факторы. Желтый комплекс образуется при рН=1,6—1,8 в течение 3—5 мин. В связи с тем, что часто приходится проводить определение кремния в пробах неизвестного элементного состава или в веществах, содержащих фосфор, мышьяк, германий, образующие гетерополикислоты с молибдатом, в состав восстанавливающего раствора вводят серную и щавелевую кислоты. Первую — для резкого изменения pH до 0,8—1,0, при котором эти гетерополикислоты разрушаются, вторую — в качестве маскирующего агента для мешающих соединений. Для предотвращения ослабления окраски кремниймолибденового комплекса маскирующие агенты и кислоту вводят после полного развития окраски желтого кремниймолибденового комплекса. Возможность определения кремния в присутствии фосфат-ионов установлена для атомных соотношений фосфор кремний = 2 1. [c.171]

    Определение бора, кремния и фосфора (или германия) бора, германия и фосфора (или мышьяка) в одной навеске. Навеску 3—10 мг помещают на дно бомбы, добавляют 6— 8 гранул КОН при анализе твердых веществ или 12—15 гранул при анализе жидких соединений, содержащих большое число арильных радикалов. Закрывают бомбу, помещают в нагретую до 850—900 °С печь и сплавляют 30 мин. Охлаждают бомбу, плав переносят в платиновую чашку вместимостью 50—100 мл и нагревают на кипящей водяной бане 10 мин. Охлаждают раствор и переносят его в предварительно взвешенный полиэтиленовый флакон вместимостью 200—300 мл или кварцевую колбу. Нейтрализуют раствор 1 М H2SO4 и доводят объем до 100—200 мл на весах в зависимости от содержания элементов. Если анализируемое вещество не содержит кремния, то плав переносят не в платиновую чашку, а в предварительно взвешенную кварцевую колбу. [c.205]

    Детектирование реакционноспособных соединений с помощью ДЭЗ требует защиты радиоактивного источника от действия на него анализируемых веществ. Так, детектор с источником, обдуваемым дополнительным потоком инертного газа, был применен для определения малых концентраций хлоридов фосфора, кремния, олова и германия [46, 152]. Этот прием, незначительно усложнив конструкцию детектора и практически не повлияв на его чувствительность, позволил определить в восьмикомпонентной смеси неорганических хлоридов и металлоорганических веществ примеси трихлорида фосфора в концентрации Ы0 %, тетрахлорида кремния — до 1х Х10 %, оксихлорида фосфора—Ы0 %. Если чувствительность ДЭЗ по отношению к тетрахлориду кремния и фосфорсодержащим соединениям на несколько порядков выше, чем чувствительность катарометра, то к тетрахлориду олова чувствительность ДЭЗ и катарометра одинакова. [c.83]

    Как правило, оправдана и практика создания на основе алкидных (и некоторых других полиэфирных) лакокрасочных материалов покрытий пониженной горючести. Действительно, многие трудногорючие высокомолекулярные соединения, содержащие галогены или такие гетеро-атомы, как фосфор, кремний, азот, дороги и дефшштны, либо не позволяют получать покрытия со всем комплексом необходимых функциональных свойств. Доступные же олигоэфирные связующие при использовании определенных замедлителей горения, в целом сохраняя свои основные характеристики, также дают покрытия с практически необходимой огнезащищенностью, хотя из-за сравнительно высокой горючести исходных пленкообразователей такая огнезащищенность достигается при увеличении КИ композиций не менее чем на 8—9 % (с 16—18 до примерно 26% [147]). [c.98]

    Предложены методы определения малых количеств фосфора, кремния, мышьяка и германия, основанные на образовании 01фа-шенной соли цри взаимодействии ОК с ГПК в присутствии целого рада защитных коллоидов, предотвращаящих образование твердой фазы ГПК-ОК [76-87]. Однако по сравнению с экстракционно-фсзто-метрическим вариантом и методикой с наделением соединений в твердую фазу такой прием приводит к существенному снижению мо-лщ)ных коэффициентов поглощения, а следовательно, повышает предел обнаружения, что в большинстве случаев нежелательно. [c.158]

    Stuttgart, S hellingstrasse 26 Директор J. Goubeau Направление научных исследований определение структуры неорганических соединений бора, кремния и фосфора спектральный анализ. [c.325]

    Получены пленки на подложках из кремния (без и со слоем окисла), фарфора, корунда, молибдена и графита [221J. Если коэффициенты термического расширения пленки и подложки значительно различаются, то могут быть получены пленки толщиной лишь 10—80 мкм. При использовании в качестве подложек корунда и фарфора в пленках всегда наблюдалось определенное количество легирующей примеси р-типа за счет диффузии алюминия из подложки. Содержание углерода в микрокристаллическом кремнии не влияет на окисление, однако травление пленки происходит более или менее трудно в зависимости от количества углерода в форме карбида. При высоком содержании углерода для этой цели может быть успешно использован расплав солей, например смесь КОН—KNO i—KF. Легирование растущего кремния добавлением летучих соединений мышьяка или бора к газовой смеси не приводило к получению пленок с воспроизводимыми электрическими свойствами. Концентрация носителей в получаемых образцах была много меньше, чем в монокристаллических слоях, полученных в сравнимых условиях. Однако если эти пленки отжигать в азоте или кислороде, то концентрация носителей соответствует приблизительно ожидаемой из-за равномерного распределения по объему в процессе диффузионного отжига. Скорость диффузии бора из источника В203—Si02 значительно уменьшается с увеличением содержания карбида бора. Подвижность носителей в отожженных пленках была равна 10—50 см"1в-сек. В табл. 7-9 показаны типичные результаты для пленок толщиной 150 мкм, которые были легированы из паровой фазы с молярным отношением треххлористого фосфора к соединению кремния, равным 10 5. [c.233]

    Химические помехи обусловлены присутствием труднодиссоци-ируемых соединений определяемого элемента в аналитической зоне атомизации. В ряде случаев такие соединения могут образовываться непосредственно в пламени при распылении в него анализируемого раствора. В результате снижается количество свободных атомов, способных к поглощению резонансного излучения. Типичным проявлением химических помех является снижение абсорбции при определении в почве щелочноземельных элементов в присутствии фосфора, кремния, алюминия. Другим примером помех такого рода служит уменьшение сигнала поглощения при определении алюминия, молибдена, ванадия и др. в результате образования устойчивых окислов. [c.19]

    Гетерополикислоты. Хорошо известно образование фосфорномолибденовой кислоты Hз[P(MOзOl )J на образовании этого окрашенного в желтый цвет соединения основаны различные методы определения малых количеств фосфора в металлах, горных породах и т. д. Подобные же соединения образуют кремний и мышьяк. При обработке гетерополикислот названных элементов подходящими восстановителями образуются продукты восстановления (церулеокислоты), окрашенные в интенсивно синий цвет. Это позволяет еще больше повысить чувствительность методов определения. [c.213]

    Молибденофосфорная ГПК получается в 0,85 н. растворе минеральной кислоты, молибденомышьяковая в 0,6—0,9н. растворе, молибденокремниевая кислота в слабокислом растворе (рН1,5—2,0 и pH 3—4). Различная устойчивость указанных комплексных соединений широко используется при определении кремния, фосфора и мышьяка в их смеси. При фотометрическом определении этих элементов по желтым формам следует учитывать различные модификации а- и р- форм, природа которых не совсем ясна. По-видимому, решающим в образовании этих форм является степень полимеризации молибдата возможно различия заложены в структуре ГА. [c.139]


Смотреть страницы где упоминается термин Определение фосфора кремнии и его соединения: [c.1092]    [c.149]    [c.182]    [c.669]    [c.91]    [c.87]    [c.155]    [c.110]    [c.64]    [c.196]    [c.41]    [c.91]    [c.214]    [c.196]    [c.174]   
Аналитическая химия фосфора (1974) -- [ c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение

Определение в фосфорите

Соединение определение

Фосфорила соединения



© 2025 chem21.info Реклама на сайте