Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотоэффект, выход

    Чтобы фотон, ударяющийся о поверхность металла, мог выбить из него электрон, он должен обладать энергией, превышающей некоторый минимум. Эта минимальная, или пороговая, энергия называется работой выхода электрона из металла. Если падающий фотон имеет большую энергию, ее избыток превращается в кинетическую энергию выбитого фотона. Пороговая длина волны фотоэлектрической эмиссии из Li, выше которой фотоэффект не происходит, равна 5200 А. Вычислите скорость электронов, испускаемых литием при его облучении светом с длиной волны 3600 А. [c.381]


    Под влиянием многих внешних факторов, в частности, под влиянием освещения электроны могут выходить через поверхность металла или полупроводника в окружающую среду. Такое явление носит название внешнего фотоэффекта, а приборы, основанные на его использовании, называются фотоэлементами. [c.167]

    При увеличении частоты света растет энергия каждого фотона, поэтому увеличивается и скорость свободных электронов. Легко понять также появление определенной граничной частоты фотоэффекта когда для данного металла работа выхода одного электрона больше, чем энергия одного фотона, фотоэффект не наблюдается. [c.22]

    Широко используют фотоэлементы, основанные на фотоэффекте. Падающий на приемник свет дает на выходе электрический сигнал, величина которого зависит от интенсивности светового потока. Величина электрического сигнала обычно очень мала и его можно измерить или зарегистрировать только после усиления. Применение радиотехнических методов для усиления электрического сигнала исключает потерю времени на фотометрирование, что обеспечивает очень высокую скорость измерения фотоэлектрическим методом. По скорости измерения этот метод часто превосходит даже визуальный, не говоря уже [c.187]

    Вакуумные фотоэлементы и фотоумножители основаны на внешнем фотоэффекте. Поэтому границу чувствительности нельзя продвинуть достаточно далеко в сторону длинных волн, так как работу выхода электронов не удается достаточно сильно уменьшить. Легче осу- [c.189]

    Работа выхода и фотоэффект. Работой выхода электрона называется минимальная энергия, которую необходимо затратить для извлечения электрона с поверхности металла или полупроводника в вакуум. Измеряется она в электрон-вольтах, как и энергия ионизации атомов. Как правило, работа выхода электронов из металла меньше энергии ионизации атомов того же металла (табл. 21). Эта величина является [c.270]

    Если энергия падающего кванта света достаточна для преодоления работы выхода, то электрон срывается с поверхности твердого тела н вакуум в этом проявляется так называемый внешний фотоэффект подробно изученный. А. Г. Столетовым в 1888 г. [c.271]

    Если поглощение фотонов в полупроводнике сопровождается увеличением его электропроводности за счет переброски электронов с примесных уровней или из валентной зоны в зону проводимости беч выхода электронов наружу, то такой процесс называется внутренним фотоэффектом. [c.271]


    Известно, что второй и третий законы фотоэффекта не могли быть объяснены на основе классической волновой теории света и привели к очередной катастрофе классической физики. Эйнштейну (1905 г.) первому удалось дать теоретическое объяснение этих законов, применив для этой цели планковское представление о квантах света. Он предположил, что энергия светового кванта йсо, падаюш,его на металл, целиком расходуется на работу вырывания (выхода) электрона из металла и на сообщение ему кинетической энергии [c.413]

    Работа выхода и фотоэффект. Работой выхода электрона называется минимальная энергия, которую необходимо затратить для извлечения электрона с поверхности металла или полупроводника в вакуум. Измеряется она в электрон-вольтах, как и энергия ионизации атомов. Как правило, работа выхода электронов из металла меньше энергии ионизации атомов того же металла (табл. 21). Эта величина является важной характеристикой материалов, используе.мых для изготовления фотокатодов и катодов электронных ламп (термоэмиссионных катодов). Благодаря низкому потенциалу ионизации атомов щелочных металлов и малой работе выхода они легко теряют электроны даже при простом освещении. [c.335]

    В этих устройствах поток электронов, создающий электрический ток в первичной цепи, образуется за счет внешнего фотоэффекта, который имеет место на фотокатоде, подверженном воздействию оптического излучения. Максимальная длина волны регистрируемого излучения определяется работой выхода электрона из фотокатода в частности, для кислородно-серебряно-цезиевого фотокатода она со- [c.212]

    Отсюда следует, что фотоэффект будет наблюдаться только в том случае, когда /гv>Л, т. е. когда энергия светового кванта будет больше работы, затрачиваемой на освобождение электрона. Из этой же формулы можно вычислить п о р о г фотоэффекта для каждого металла, т.. е. такую наименьшую частоту Уо, при которой еще наблюдается явление фотоэффекта. При этом энергии кванта достаточно только на совершение работы выхода из металла, но сообщить электрону кинетическую энергию квант уже не может (и=0). Отсюда ясно, что порог фотоэффекта определяется только работой выхода А из поверхности данного металла и ни от каких других факторов не зависит. Учитывая, что [c.45]

    ЛИЧИНЫ контактной разности потенциалов, которая дает значение разности работ выхода исследуемого полупроводника и электрода сравнения и определяется так называемым методом вибрирующего конденсатора. Корреляция между изменением работы выхода в результате введения добавок и активностью катализатора в исследуемой реакции может дать сведения о путях улучшения свойств данного катализатора. То обстоятельство, что одни и те же факторы могут влиять как на каталитическую активность, так и на оптические и электрические свойства полупроводника, позволяет связывать каталитические исследования с измерением красной границы внешнего фотоэффекта полупроводника. [c.35]

    Фотоэлектронный, при котором работа выхода определяется по красной границе фотоэффекта. [c.3]

    Для приемников с внешним фотоэффектом интегральная чувствительность будет определяться отношением изменения фототока на выходе приемника к изменению падающего на него потока. [c.45]

    Частота соответствует так называемой красной границе фотоэффекта. Она определяется из спектрального распределения фотопроводимости зная ее, можно определить работу выхода. Однако в применении к полупроводникам метод весьма неточен, так как тепловое движение обычно достаточно сильно размывает границу. [c.284]

    Здесь ф — работа выхода электронов из катода в электрон-вольтах. Граница фотоэффекта связана с чисто поверхностными явлениями и поэтому зависит [c.316]

    Цезий нашел применение главным образом в производстве фотоэлементов, причем он в этом отношении имеет несомненные преимущества перед рубидием. Цезий обладает наибольшим фотоэффектом среди других щелочных металлов в сочетании с наименьшей работой выхода электронов. Благодаря этому развитие промышленного получения и применения цезия обязано главным образом развитию применения фотоэлементов в современной технике. [c.240]

    При поглощении на основе фотоэффекта вся энергия у-кван-та передается сильно связанному электрону (в основном электрону на Д -оболочке) атома кристалла и возникающему при этом фотону рентгеновского характеристического излучения. Возникшие фотоэлектрон и характеристический рентгеновский квант полностью поглощаются в кристалле. Следовательно, при фотоэффекте почти вся энергия падающего у-кванта поглощается в кристалле и на выходе счетно-анализируемой электронной схемы возникают электрические импульсы почти равной амплитуды, которые создают пик иа аппаратурной линии. Такие же [c.71]

    Другие экспериментальные доказательст11а высказанной точки зрения получаются нз фотоэлектрических измерений. Нормальная (неизбирательная) фотоэлектрическая эмиссия с вольфрамовой нити, на которой адсорбирован натрий, ири сравнительно малых заполнениях растет с температурой. Напротив, при более высоких заполнениях фотоэффект с ростом температуры падает. Оба эти эффекта обратимы [253]. Очевидно, что при сравнительно низких значениях О, когда адсорбированный натрий находится на поверхности в виде ионов, повышение температуры приводит к небольшому увеличению среднего расстояния ионов от поверхности, вследствие чего дипольньп" момент слегка увеличивается, а работа выхода слегка уменьшается. Если же натрий адсорбирован в виде атомов, то диполи, образовавшиеся теперь в результате поляризации атомов полем металла, уменьшаются, так как с повышением температуры среднее расстояние атомов натрия от поверхности металла увеличивается. [c.139]


    Явление фотоэффекта, открытое в 1887 г. Герцем и детально исследованное А. Г. Столетовым, состоит в том, что металлы (или полупроводники) при действии на них света испускают электроны. Объяснить фотоэффект исходя из волновой теории света невозможно. Расчет показывает, что ввиду незначительных размеров электрона количество энергии, сообщаемое падающими на него электромагнитными волнами, так мало, что при освещении солнечным светом потребовалось бы облучение по крайней мере в течение нескольких часов для того, чтобы электроны накопили энергию, достаточную для выхода из металла (и то при отсутствии передачи поглощенной электронами энергии атомам). Однако вылет электронов наблюдается сразу же после освещения металла. Кроме того, согласно волновой теории, энергия 3 электронов, испускаемых металлом, должна быть пропорциональна интенсивности падающего света. Однако было установлено, что 3 от интенсивности света не зависит, а зависит от его частоты, увеличиваясь с ростом V возрастание интенсивности приводит лишь к увеличению числа вылетающих из ieтaллa электронов. [c.20]

    В периодической системе элементов к металлам относят элементы I, II и III групп, кроме В, элементы IV группы, кроме С и 51, V группы, кроме Ы, Р, Аз, элементы побочных подгрупп VI, VII, VIII группы, а также лантаноиды и актиноиды, т. е. в периодической системе подавляющее большинство элементов (около 80%) —металлы. Металлы в реакциях окисления — восстановления проявляют восстановительные свойства, отдавая свои электроны, переходят в положительно заряженные ионы. Отрицательно заряженных ионов они не образуют. Отрыв наружных электронов у атомов металлов может быть осуществлен не только в ходе химических реакций, но и в процессе термоэлектронной эмиссии — испускания электронов нагретыми телами в результате теплового возбуждения электронов в этих телах — и фотоэлектрического эффекта (или фотоэффекта), когда под действием освещения происходит выход электронов из металлов. Металлы при этом заряжаются положительно. [c.85]

    При рассмотрении химической связи в металлическом кристалле мы останавливались на возникновении энергетических зон нз атомных энергетических уровней. Образование энергетических зон приводит к тому, что наименьшая энергия, которая должна быть затрачена,, чтобы отщепить электроны от твердого металла, станоьится существенно меньше, чем энергия ионизации свободного атома. Эту энергию, так называемую работу выхода , можно определить измерением фотоэффекта или термоэмиссионного эффекта. Она составляет,, например, для меди 4,.6 эв. в то время как работа ионизации атома меди составляет 7,7 эв. Следовательно, верхний край энергетической зоны в металлической меди лежит на 7,7 — —4,3 = 3,4 эв выше, чем 45—уровень в атоме меди. [c.69]

    Особый класс полупроводниковых фотоэлементов с запирающим слоем, работающих на основе внутреннего фотоэффекта, не требует питания током от внешнего источлика, так как в них создается фото-электродвижущая сила при освещении. Фотоэлементы широко используются в автоматике, сигнализации, звуковом кино, изготовлении солнечных батарей и т.д. Цезий используется также для активации термоэлектронной эмиссии с вольфрамовых катодов электронных ламп. Если работа выхода с поверхности чистого вольфрама порядка 4,5 эв, то с поверхности вольфрама, активированного напыленной пленкой цезия, она снижается до 1,4 эв. Ток эмиссии при заданной температуре может возрасти на 10 порядков и больше. [c.274]

    Это уравнение — то же, что и для фотоэффекта, первоначально наблюдавшегося в впде эмиссии электронов с металлических поверхностей, за исключением того, что выражение для работы выхода заменено энергией, необходимой для вырывания электрона, то есть потенциалом ионизации. Такие измерения позволяют строить диаграммы энергии молекулярных орбиталеИ непосредственно по экспериментальным данный и дают возможность критически оценивать теории связи, ие прибегая к Н1 туиции. [c.30]

    Для регистрации у-излучения используют сцинтилляционные (на основе Nal, sl) или полупроводниковые (на основе Ge, Si, lT j) детекторы, счетчики Гейгера-Мюллера и др. Нуклиды, используемые в кач-ве источников у-квантов, должны давать моноэнергетич. излучение с энергией, обеспечивающей макс. сечение фотоэффекта для определяемого элемента, иметь длительный период полураспада и высокий выход у-квантов. Наиб часто применяют Ат, Тт, Со, а также Sr и Рг (для получения тормозного излучения). [c.501]

    При освещении алмаза, как и других широкозонных полупроводников, наблюдается фотоэлектрический эффект, связанный с фотогенерацией свободных носителей заряда. В то время, как у диэлектрического алмаза легче наблюдать явление фотопроводимости, т. е. повышение электропроводности из-за увеличения концентрации основных носителей заряда, у проводящих (легированных) образцов, которые используются в электрохимии, на первый план выходят фотоэффекты на границах раздела фаз, обусловленные влиянием фотогенерации неосновных носителей в объеме алмаза на протекание тока через контакт алмаза с другой проводящей фазой или на заряжение этого контакта. При этом в потен-циостатическом режиме регистрируется фототок, а в гальваностатическом или кулоностатическом — фотопотенциал. [c.79]

    Рубидии и цезий обладают замечательными оптическими свойствами, заключающимися в том, что в ультрафиолетовой части спектра эти металлы становятся прозрачными. Их показатель преломления в прозрачной области меньше единицы (явление полного внутреннего отражения). Границы проз.рачности калия, рубидия и цезия расположены только в области длинных волн при 315, 360 и 440 нм соответственно [49]. Различия в значениях работы выхода электрона (Луо) (см. табл. 3) в основном могут быть вызваны состоянием поверхности металла, в частности наличием пленки окислов, увеличивающей значение /п о и снижающей фототок. Максимальная длина волны света (Хо), способная вызвать фотоэффект и называемая поэтому красной границей фотоэффекта или его порогом , вычисленная из данных табл. 3, равна для рубидия и цезия 570 и 650 нм соответственно. Необходимо заметить, что красная граница при увеличении температуры металла смещается в сторону больших длин волн. Поверхность рубидия и цезня обладает избирательным фотоэффектом. Максимум фоточувствительности у кл-лия, рубидия и цезия (в вакууме) лежит около 440, 470 и 480 нм соответственно. Кроме спектральной селективности достаточно толстые жидкие слои рубидия и цезия с зеркально гладкими повгрх-ностями обнаруживают также поляризационную селективность, т. е. зависимость фоточувствительности от состояния поляризации и угла падения света на поверхность [34, 49]. [c.79]

    Поверхностные состояния играют важную роль в физике полупроводников. Предположение о наличии на поверхности полупроводника большой концентрации поверхностных состояний позволило Бардину [2] объяснить чрезвычайно интересный опытный факт независимости работы выхода полупроводника от положения уровня Ферми в его объеме. В случае германия или кремния именно эти состояния (расположенные, по-видимому, на поверхности окисной пленки) ответетвенны за явления медленной релаксации, наблюдаемые в опытах по эффекту поля [3 по измерению проводимости канала а п-р-п (или р-п-р) переходе [4] и в опытах по поверхностному фотоэффекту. [c.146]

    К новым применениям спектроскопии в проблеме катализа следует отнести использование спектра внешнего фотоэлектрического эффекта в поверхности окисных катализаторов под действием короткого ультрафиолетового излучения. Принцип этого метода, осуществленного аспирантом Вилесовым в ЛГУ, заключается в том, что при помощи ионизационного счетчика измеряется ничтожная по своей величине (10 А) фотоэмиссия с поверхности полупроводникового катализатора, вызываемая освещением ультрафиолетовым светом в области длин волн короче 2500 А. Длинноволновый порог фотоэффекта, а следовательно, работа выхода электрона с очищенной от газов поверхности может быть определена с точностью, превышающей 0,1 эв. После адсорбции на полупроводнике газов, примешанных к основному газу счетчика (аргон), порог фотоэффекта испытывает значительные перемещения в сторону больших или меньших частот, свидетельствующие об изменении работы выхода. Как и для хорошо изученного внешнего фотоэффекта с металлов, это явление вызвано поляризацией или ионизацией адсорбированных газовых молекул, причем поляризация или ионизация с направлением поверхностного электрического поля, благоприятствующим выходу электрона, снижает работу выхода и наоборот. [c.221]

    Поведение на катализаторе из окиси хрома весьма своеобразно в том отношении, что наряду со смещением порога на 1,0 эв для бензола в сторону больших энергий (от значения для вакуума, равного 6,6 эв) наблюдается при больших заполнениях адсорбированным этанолом развитие необычного для кривых внешнего фотоэффекта спектрального максимума у 6,7 эв с длинным продолжением до 5,5 эв (рис. 12). Последнее большое смещение и уменьшение работы выхода не может быть обязано только поляризации молекул эгаьюла на поверхпости это сви- [c.222]

    Относительно недавно появился еще один физический метод анализа — электронная спектроскопия для химического анализа (ЭСХА), которую называют также рентгеноэлектронной спектроскопией. В основе метода — явление рентгеновского фотоэффекта, метод пригоден для изучения твердых, в частности органических, веществ. Эффективный слой твердого вещества для выхода фотоэлектронов составляет приблизительно 10 нм, поэтому рентге-ноэлектронная спектроскопия перспективна для изучения состава поверхностных слоев и пленок. Важно только, чтобы вещество не разлагалось под действием рентгеновских лучей или вакуума, исследуемая поверхность должна быть чистой. Относительная ошибка определения может быть доведена до 1—2%, определять можно все элементы, кроме водорода. К сожалению, точные аналитические характеристики метода не вполне установлены. В СССР первые работы по ЭСХА начались в Институте общей и неорганической химии АН СССР (В. И. Нефедов). Приборы для анализа и исследования вещества этим методом выпускают несколько зарубежных фирм — Вариан (США, Швейцария), Хьюлет-Паккард (США), Вакуум Дженерейторс (Англия). [c.74]

    Фотоэлементы основаны на явлении фотоэффекта, открытом Столетовым в 1888 г. Сущность фотоэффекта заключается в вырывании электронов с поверхности различных тел. под действием световой энергии. Это происходит только при условии, если энергия светового кванта больше работы выхода электрона Лвых т. е. энергии, необходимой для освобождения электрона и удаления его с поверхности данного тела [c.92]

    Из кривой рис. 24 видно, что с ростом температуры интенсивность вспышки резко возрастает, достигая максимального значения при —140°С, после чего интенсивность медленно падает, по-видимому, вследствие уменьшения концентрации Р-центров. Небольшой подъем кривой при +-50°С обусловлен термическим высвобождением электронов с более мелких уровней по сравнению с уровнями Р-центров. По форме левая часть кривой рис. 24 почти идентична кривой зависимости фототока в Na l от температуры при его освещении светом в р-полосе поглощения [2, 14]. При понижении температуры кристалла около —150°С наблюдается очень крутой спад фототока, возникновение которого при низких температурах обусловлено зависимостью величины квантового выхода внутреннего фотоэффекта от температуры. Подобная зависимость определяется тем, что под действием света электрон переходит сначала преимущественно на возбужденный уровень 2р, с которого он может попасть в зону проводимости лишь под действием тепловых колебаний решетки. Совершенно ясно, что вероятность его освобождения с уровня 2р должна уменьшаться с понижением температуры кристалла, [c.65]


Смотреть страницы где упоминается термин Фотоэффект, выход: [c.91]    [c.21]    [c.52]    [c.94]    [c.69]    [c.240]    [c.34]    [c.72]    [c.12]   
Ионизованные газы (1959) -- [ c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Фотоэффект



© 2025 chem21.info Реклама на сайте