Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность аммиаке

    Последние два раствора (уксусной кислоты и аммиака) слить вместе и испытать электропроводность полученного раствора. Объяснить разницу в степени накала лампочки в этом случае и в случае прохождения тока через уксусную кислоту и раствор аммиака, взятые отдельно. [c.65]

    Эффективность автоматизированных систем обработки эколого-ана-литической информации заметно повьппается при использовании автоматических станций контроля загрязнений воды и воздуха. Локальные автоматизированные системы контроля загрязнений воздуха созданы в Москве, Санкт-Петербурге, Челябинске, Нижнем Новгороде, Стерлита-макс, Уфе и других городах. Проводятся опытные испытания станций автоматизированного контроля качества воды в местах сброса сточных вод и водозаборах. Созданы приборы для непрерьшного определения оксидов азота, серы и углерода, озона, аммиака, хлора и летучих углеводородов. На автоматизированных станциях контроля загрязнений воды измеряют температуру, pH, электропроводность, содержание кислорода, ионов хлора, фтора, меди, нитратов и т.п. [c.27]


Рис. XVII, 10. Зависимость эквивалентной электропроводности растворов натрия в жидком аммиаке от концентрации. Рис. XVII, 10. <a href="/info/869526">Зависимость эквивалентной электропроводности</a> <a href="/info/18903">растворов натрия</a> в <a href="/info/15948">жидком аммиаке</a> от концентрации.
    На основании показаний амперметра сравните электропроводности растворов уксусной кислоты, аммиака и ацетата аммония одинаковой концентрации (2 и.). Объясните, почему раствор ацетата аммония является лучшим проводником тока, чем растворы уксусной кислоты и аммиака  [c.89]

    Электропроводность растворов в жидком аммиаке [c.454]

    Налейте в стакан одинаковые объемы (по 25 мл) 4 н. растворов уксусной кислоты и аммиака и перемешайте их чистой стеклянной палочкой. Измерьте электропроводность полученного раствора ацетата аммония, образовавшегося в результате взаимодействия растворов уксусной кислоты и аммиака. [c.89]

    Рпс, 5.6. Измепепие молярной электропроводности с разведением для раствора иатрия в жидком аммиаке [c.134]

    Жидкий аммиак практически не проводит электрического тока. Будет ли меняться электропроводность аммиака при добавлении небольших количеств а) твердого оксида углерода (IV) б) жидкого сероводорода  [c.123]

    Получение водорода (потребляемого в больших количествах при синтезе аммиака) осуществляется во многих случаях путем электролитического разложения воды. Ввиду очень малой электропроводности воды, для уменьшения расхода электроэнергии электролизу подвергают не чистую воду, а раствор такого электролита, ионы которого, отличные от и ОН", разряжаются много труднее, чем ионы Н+ и 0Н . В результате этот электролит практически полностью сохраняется, а вода разлагается на водород и кислород. К таким электролитам принадлежат, в частности, едкий натр, серная кислота. [c.447]

    Наряду с системами, для которых законы Фарадея оправдываются количественно, существуют и такие, где возможны отклонения от этих законов. Так, например, расчеты по законам Фарадея окажутся ошибочными в случае электролитической ванны, состоящей из двух платиновых электродов, погруженных в растнор металлического калия в жидком аммиаке. Такой раствор, как проводник со смешанной электропроводностью, обладает заметной металлической проводимостью, и значительная доля электронов в процессе электролиза способна непосредственно переходить с электрода в раствор, не вызывая никакого химического превращения. Подобные же явления наблюдаются при прохождении тока через газы. Одиако такие системы уже не будут истинными электрохимическими системами, состоящими только из проводников первого и второго рода. В истинных электрохимических системах переход электронов с электрода в раствор и из раствора на электрод обязательно связан с химическим превращением и, следовательно, полностью подчиняется законам Фарадея. Законы Фарадея, являясь, таким образом, естественным и неизбежным результатом самой природы электрохимического превращения, должны в то же время рассматриваться как наиболее надежный критерий истинности электрохимических систем. [c.282]


    Смешанные проводники — тела, сочетающие электронную и ионную проводимости, например растворы щелочных и щелочноземельных металлов в жидком аммиаке, некоторые твердые соли. Их электропроводность, а также знак температурного коэффициента проводимости зависят от состава проводника и температуры (от относительного вклада электронной и ионной составляющих), изменяясь от значений, характерных для чисто ионных проводников, до значений, присущих металлам. [c.103]

    На рис. 5.1 показана зависимость и от с для различны.х электролитов. Наибольшей удельной электропроводностью обладают сильные кислоты, затем щелочи, далее идут соли, очень мала электропроводность растворов таких электролитов, как уксусная кислота или аммиак. Характерно прохождение удельной электропроводности через максимум. Такой вид кривых зависимости х от с можно объяснить следующим образом. [c.183]

Рис. 24. Зависимость эквивалентной электропроводности от разведения для раствора металлического натрия в жидком аммиаке Рис. 24. <a href="/info/869526">Зависимость эквивалентной электропроводности</a> от разведения для <a href="/info/12679">раствора металлического</a> натрия в жидком аммиаке
    Жидкий аммиак обладает способностью растворять щелочные металлы с образованием окрашенных, хорошо проводящих ток растворов. Электропроводность этих растворов обусловлена взаимодействием атомов щелочного металла с молекулами аммиака, в результате которого происходит ионизация атомов металла, причем электроны связываются молекулами аммиака  [c.454]

    Элементы, активируемые аммиаком. Принцип устройства таких элементов основан на том, что некоторые соли становятся, хорошими проводниками электричества при насыщении их аммиаком. К таким солям относится, например, роданистый аммоний, поглощающий аммиак с большой скоростью и образующий электропроводную, жидкость, которая имеет невысокое давление насыщенных паров аммиака. [c.45]

    О солеобразном характере получающихся промежуточных соединений свидетельствует высокая электропроводность их растворов. Например, высокую электропроводность имеют ярко-окрашенные растворы 2,4-дннитро- и 2,4,6-тринитротолуолов и 1,3-динитробензола в жидком аммиаке. В случае тринитротолуола (86) аммиак, по-видимому, играет роль не только растворителя, но и основания, отрывая один из достаточно подвижных атомов водорода метильной группы. В случае динит- [c.404]

    Опыт 8. Электропроводность водных растворов аммиака и гидроксидов металлов. Проверьте электропроводность 1 н. растворов гидроксидов натрия, калия и раствора аммиака. Объясните наблюдаемое. [c.27]

    Электроны располагаются в создаваемых ими пустотах растворителя и обусловливают интенсивно синий цвет растворов, его металлический блеск при больших концентрациях растворенного металла и высокую электропроводность. Зависимость электропроводности растворов натрия в жидком аммиаке от разведения приведена на рис. 24. При больших разведениях электропроводность обусловлена ионами Na+ и соль-ватированными электронами. Уменьшение разведения приводит к образованию ионных пар, а также диамагнитных димеров из двух металлических ионов и двух электронов, в результате чего электропроводность уменьшается. При содержании щелочного металла более [c.78]

    Результат. После смешивания растворов индикаторная лампа измерительной установки горит ярче, чем до этого. Смесь растворов аммиака и уксусной кислоты обладает большей электропроводностью, чем эти растворы порознь. [c.65]

    В опыте Б показано, что с увеличением разбавления растворов аммиака и уксусной кислоты степень электролитической диссоциации их увеличивается и, как результат, наблюдается увеличение их электропроводности. [c.65]

    В опыте В показано, что многие соли тяжелых металлов занимают промежуточное положение по своим свойствам между сильными и слабыми электролитами. Так, электропроводность сульфата цинка хотя и увеличивается с уменьшением концентрации его раствора, однако не так сильно, как это имеет место в случае, например, растворов аммиака или уксусной кислоты. [c.65]

    В четыре стакана вместимостью 50 мл каждый налить по 20— 30 мл 0,1 н. растворов в первый — хлороводородной кислоты, во второй — едкого натра, в третий — уксусной кислоты, в четвертый — раствора аммиака. Испытать электропроводность этих растворов, погружая в них электроды. После каждого испытания промывать электроды в стакане с дистиллированной водой. Во время опыта следить за накалом лампочки и по степени ее накала сделать качественный вывод о силе исследуемых кислот и оснований. [c.65]

    Опыты 2, 3 и 4. Прибор для сравнения электропроводности растворов (см. рис. 47). Сахар, глюкоза, глицерин, раствор в дистиллированной воде. Хлорид калия, 1 и. раствор. Уксусная кислота ледяная, 12,5 и., 5 и., 8 н., 4н,, 1 и. и 0,1 н. Аммиак, 25%-ный раствор. [c.306]


    На основании данных об электропроводности Е. Н. Гурьянова и В. А. Плесков рассчитали константы диссоциации ряда кислот по методу Фуосса и Крауса, рассматривая равновесие в аммиаке как результат ассоциации ионов. [c.282]

    Диэлектрическая проницаемость жидкого аммиака велика ( 23), а электропроводность ничтожно мала. Аммиак кристаллизуется в решетке молекулярного типа. [c.57]

    В большинстве растворителей окислительно-восстановительные реакции идут по нормальной схеме, но в жидком аммиаке и некоторых алифатических аминах щелочные и щелочноземельные металлы ведут себя совершенно аномально. В свободном виде элементы обеих групп легко растворяются в жидком аммиаке, и после испарения аммиака получаются исходные щелочные металлы, а щелочноземельные металлы образуют аммиакаты состава М(ЫНз)в- Разбавленные растворы всех этих металлов имеют характерную синюю окраску. Спектры поглощения растворов равных концентраций одинаковы для всех этих металлов, это означает, что синяя окраска обусловлена одинаковыми частицами. Оказалось, что эти растворы обладают необычайно высокой электропроводностью. Эквивалентная электропроводность этих растворов любой концентрации более высокая, чем электропроводность любой известной соли н любом растворителе, а для больших концентраций она приближается к электропроводности металлов. Структура этих растворов детально изучена, основные сведения [c.352]

    Однако после точки эквивалентности электропроводность остается практически постоянной. Избыток слабого основания, диссоциация которого подавляется находящейся в растворе солью, не может вызвать повышения проводил№сти раствора. Примером может служить кривая тнтрования хлористоводородной кислоты аммиаком (рис. 6, з). [c.81]

    Очень слабые кислоты практически не взаимодействуют со слабыми основаниями, что может быть использовано при определении некоторых многоосновных кислот. Например, если титровать фосфорную кислоту раствором аммиака, то кондуктометрическая кривая имеет изломы, соответствующие первой и второй точкам эквивалентности. При титровании до первой точки электропроводность понижается, а до второй — повышается. После второй точки эквивалентности электропроводность остается постоянной, так как аммиак не взаимодействует с НРО -ионами, кислотные свойства которых выражены очень слабо. [c.81]

    Электроны располагаются в создавае- мых ими пустотах растворителя и обу- словливают интенсивно синий цвет растворов, его металлический блеск при больших концентрациях растворенного металла и высокую электропроводность. Зависимость электропроводности растворов натрия в жидком 41/ аммиаке от разведения приведена на рис. IV. 12. При больших разведениях электропроводность обусловлена ионами Ыа+ и сольватированными электронами. Уменьшение разведения приводит к образованию ионных пар, а также диамагнитных димеров из двух ионов металла и двух электронов, в результате чего электропроводность уменьшается. При содержании щелочного металла более 0,1 моль/л электропроводность снова возрастает вследствие того, что степень сольватации электронов падает. При дальнейшем увеличении концентрации щелочного металла волновые функции электронов перекрываются и раствор приобретает металлическую проводимость, превышающую проводимость водных растворов сильных электролитов на четыре порядка. [c.87]

    Интересным свойством щелочных металлов является их способность растворяться в жидком аммиаке, некоторых аминах и эфирах. В разбавленном состоянии эти растворы имеют голубую окраску и обладают значительной электропроводностью. Свойства таких растворов объясняются наличием в них сольва-тированных электронов, которые образуются за счет ионизации атомов металла. Например, [c.229]

    Опыт 4. Изменение электропроводности при нейтрализации слабого основания слабой кислотой. Испытайте электропроводность 25%-ного раствора аммиака (см. опыт 2). Слейте раствор аммиака в стакан и прибавляйте к нему понемногу (осторожно ) концентрированную уксусную кислоту. Дайте раствору охладиться и снова испытайте его электропроводность. Чем объяснить большую электропроводность раствора  [c.119]

    В табл. 29 приведены составы комплексных соединений хлорида кобальта с аммиаком, количества осаждаемого при действии AgNOa хлора и число ионов, на которое распадается соль (по данным электропроводности). Объясните причины осаждения хлорида серебра. Напишите координационные формулы соединений. [c.104]

    Отметим, что попытки идентифицировать сольватированный электрон в облученных жидкостях делались и ранее. Так, Р. Робертс и А. Аллея [84] пытались обнаружить изменение электропроводности аммиака в результате облучения, а Г. Линнштц [85]— найти оптическое поглощение облученной воды. Однако эти попытки не увенчались успехом. [c.25]

    Переходные металлы часто входят в ярко окрашенные соединения со сложными формулами. Хотя Pt l существует как простое соединение, известны другие соединения, в которых Pt связан с двумя-шестью молекулами NH3 или с КС1 (табл. 20-1). По какой же причине подобные нейтральные и на первый взгляд способные существовать изолированно соединения ассоциируют с другими молекулами и почему они входят в образующиеся новые соединения в различных пропорциях Измерение электропроводности растворов этих соединений, а также осаждение ионов С1 ионами Ag + показывают, сколько ионов присутствует в водном растворе. Данные, полученные этими и другими способами, заставляют предположить, что обсуждаемые соединения обладают ионными структурами, перечисленными в последней колонке табл. 20-1. Указанные там вещества, содержащие аммиак, представляют собой координационные соединения, в которых молекулы NH3 располагаются вокруг центрального иона Pt. Комплексы Pt(IV) содержат октаэдрически координированные молекулы [c.205]

    Растворение KI и Nal в этиловом спирте, нагретом до температуры, превышающей его критическую, наблюдали И. Б Хен-ни и И. Хогарт [I. В. Наппу, I. Hogart, 1879, 1881 гг.]. При изотермическом снижении давления эти соли осаждались из паров и вновь растворялись при сжатии. Интересные опыты были проведены П. Виллардом (1896 г.), растворившим парафин, иод и камфару в метане, сжатом до 150—200 кгс/см. При понижении давления парафин выделялся в виде чешуек, а камфара кристаллизовалась на стенках трубки. Е. Франклин и К. Краус в 1900 г. обнаружили, что электропроводные растворы ряда солей в жидком аммиаке оставались проводящими и при температуре выше критической температуры растворителя. [c.5]

    Аналогично опыту 2 проведите измерения и сравниге электропроводность 2 н. растворов аммиака и гидроксида натрия. [c.89]

    Свойствам кислот в основных растворителях посвящено много работ, но только в немногих из них сила кислот определена количественно. Краус и Брей, а также Смит (1927) вычислили константы диссоциации ряда мпнеральных и органических соединений в аммиаке на основании данных об электропроводности. Подсчет констант они произвели по несколько видоизмененному уравнению Оствальда, экстраполируя результаты на нулевую ионную силу. [c.282]

    При нейтрализации NaOll электропроводность раствора линейно понижается, так как уменьшается концентрация высокоподвижиы.х гидроксильных ионов (рис. 17, кривая 4). При титровании слабых основании— аммиака (рис. 17, кривая /) и анилина (рис. 17, кривая 2) происходит повышение проводимости раствора до точки эквивалентности, вызываемое образованием хорошо диссоциирующих солей. На кривой титрования разбавленных растворов анилина вблизи точки эквивалентности наблюдается слабый изгиб кривой вследствие гидролиза получающегося гидрохлорида анилина. Избыток НС1 вызывает резкое увеличение электропроводности раствора. [c.108]

    Кривые титрования смесей оснований имеют два излома (рис. 17, кривые 5, 6). При нейтрализации NaOH электропроводность линейно понижается, что вызывается уменьшением концентрации высокоподвижных гидроксильных ионов. После первой точки эквивалентности электропроводность начинает увеличиваться, так как при нейтрализации слабых оснований — аммиака и анилина — образуются хорошо диссоциирующие соли. Кривая титрования смеси NaOH с ам.мнаком может [c.108]


Смотреть страницы где упоминается термин Электропроводность аммиаке: [c.134]    [c.135]    [c.455]    [c.66]    [c.157]    [c.169]    [c.110]   
Теоретическая электрохимия (1965) -- [ c.125 ]

Теоретическая электрохимия Издание 2 (1969) -- [ c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак электропроводность растворов

Натрия ацетиленид, получение электропроводность н жидком аммиаке

Сравнение электропроводности растворов уксусной и соляной кислот ( 55). Сравнение электропроводности растворов уксусной кислоты, аммиака и ацетата аммония ( 56). Влияние ацетат.а натрия на взаимодействие цинка с соляной кислотой

Удельная электропроводность аммиака

Удельная электропроводность растворов аммиака

Электропроводность в жидком аммиаке

Электропроводность растворов в жидком аммиаке

Электропроводность растворов едкого натра и аммиака

Электропроводность растворов некоторых металлов в жидком аммиаке



© 2024 chem21.info Реклама на сайте