Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ион центральный в ионной атмосфер

    Из (12.15) видно, что потенциал 4 спадает в е раз на длине 1/х-Потенциал (12.15) создается за счет ионов, окружающих центральный ион, поэтому говорят, что вокруг центрального иона существует ионная атмосфера. Величину 1/х называют радиусом ионной атмосферы. Радиус ионной атмосферы уменьшается с ростом ионной силы. Как следует из формулы (12.13), при С I моль/л радиус ионной атмосферы близок к 0,3 нм. [c.234]


    Для вычисления энергии взаимодействия необходимо определить потенциал ионной атмосферы в точке нахождения центрального иона, т. е. найти предел )1а при г-н О. Это можно сделать, используя вновь тот же прием, т. е. разлагая показательную функцию в ряд л пренебрегая высшими членами разложения [c.87]

    Эффект электрофоретического торможения. При наложении на раствор электрического поля ион, рассматриваемый как центральный, и его ионная атмосфера, обладающие обратными по знаку зарядами, движутся в противоположных направлениях. Поскольку ионы гидратированы, то движение центрального иона происходит не в неподвижной среде, а в среде, перемещающейся ему навстречу. Поэтому движущийся ион находится под влиянием дополнительной тормозящей силы (силы электрофоретического торможения), что приводит к снижению его скорости. [c.461]

    Из приведенных данных следует, что эффективные коэффициенты диффузии изменяются с концентрацией, причем эта зависимость проходит обычно через минимум, положение которого зависит от природы электролита. Уравнения (6.12) и (6.36) передают эту зависимость более или менее верно в области весьма разбавленных растворов в более широкой области концентраций она не может быть сведена к изменению коэффициента активности с концентрацией. По-видимому, такой характер зависимости коэффициента диффузии от концентрации обусловлен тем, что из-за специфики диффузионного процесса силы взаимодействия между частицами проявляются в нем по-иному, чем в состоянии равновесия или при прохождении электрического тока. В отличие от равновесного раствора с его хаотическим движением всех частиц, при котором центральный ион и ионная атмосфера могут перемещаться как в одном и том же, так и в противоположных направлепиях, при диффузии наблюдается направленное перемещение нонов, накладывающееся на их тепловое движение. [c.145]

    Дебай и Гюккель приняли основную идею Гхоша о кристалло-подобиом распределенпи ионов в растворе. Однако в растворах попы в результате теплового движения располагаются вокруг любого иона, выбранного в качестве центрального, в виде сферы. Так как в растворе преобладает поступательное движение (а не колебательное, как в крпсталла.х), ноны, входящие в состав сферы, окружающей центральный ион, непрерывно обмениваются местами с другими ионами. Такая статистическая сфера называется ионной атмосферой. Все ионы раствора равноценны, каждый нз них окружен ионной ат.мосферой, и в то же время каждый центральный иоп входит в состав ионной ат1 шс( зеры какого-либо другого иона (рпс. 3.2). Существование ионных атмосфер и есть тот характерный признак, который, по Дебаю и Гюккелю, отличает реальные растворы электролитов от идеальных. [c.83]


    Эффект релаксационного торможения. Согласно электростатической теории растворов сильных электролитов ионная атмосфера обладает центральной симметрией. При движении иона в электрическом поле симметрия ионной атмосферы нарушается. Это связано с тем, что перемещение иона сопровождается разрушением ионной атмосферы в одном положении иона и формированием ее в другом, новом. Этот процесс происходит с конечной скоростью в течение некоторого времени, которое называется временем релаксации. Вследствие этого ионная атмосфера теряет центральную симметрию, и позади движущегося иона всегда будет некоторый избыток заряда противоположного знака. Возникающие при этом силы электрического притяжения будут тормозить движение иона. Таким образом, сила, действующая на ионы и определяющая скорость их движения в электрическом поле, а следовательно, электрическую проводимость раствора, будет  [c.461]

    Величина г() в уравнении (3.47) представляет собой среднее значе-1 ие нотенциала в точке г, создаваемой ионной атмосферой и центральным ионом. Для реальных растЕоров специфическим является потенциал ионной атмосферы который находят по правилу суперпозиции потенциалов как разность п [c.87]

    Дополнительная сила трения, связанная с суш,ествованием ионной атмосферы и ее перемещением в сторону, противоположную движению центрального иона, была названа электрофоретической силой трения, а вызванный ею эффект торможения - электрофоретическим эффектом. [c.122]

    Заменим ионную атмосферу вокруг центрального иона сферой с зарядом —ге и потенциалом гра, эквивалентным потенциалу ионной атмосферы. Очевидно, радиус такой воображаемой сферы будет увеличиваться с ростом величины 1/х. [c.408]

    Потенциал электрического поля грт вокруг какого-либо иона складывается из потенциала ф, определяемого зарядом этого центрального иона, и из потенциала фа ионной атмосферы вокруг центрального иона  [c.404]

    Таким образом, заряд ионной атмосферы вокруг одного иона равен заряду центрального иона с противоположным знаком. [c.408]

    Как видно из уравнения (XVI, 33), величина х является функцией состава раствора, его диэлектрической проницаемости и температуры. Эта величина характеризует изменение плотности ионной атмосферы р вокруг центрального иона с увеличением расстояния г от этого иона. Величина 1/и имеет размерность длины. Чем меньше величина х, тем медленнее плотность зарядов р в ионной атмосфере изменяется с увеличением г. [c.408]

    Изменение энергии взаимодействия ионной атмосферы с центральным ионом сорта по мере изменения заряда последнего, [c.409]

    Энергия создания ионной атмосферы является сложной функцией концентрации раствора, от которой зависят также Г и X. Энергия заряжения центрального иона тоже входит в величину изобарного потенциала раствора, однако она прямо пропорциональна заряду иона, а при расчете на определенный объем раствора — прямо пропорциональна числу ионов, т. е. массе (само не зависит от концентрации). Поэтому при дальнейшем нахождении химического потенциала, т. е. при дифференцировании по массе, эта энергия дает постоянное, независимое от концентрации слагаемое, включаемое в которое мы не учитываем. [c.410]

    Упрощающие допущения заключаются прежде всего в том, что в теории не отражаются процессы сольватации ионов. Вместо взаимодействия отдельных ионов рассматривается взаимодействие иона с окружающей его ионной атмосферой и определяется, как изменяется плотность заряда в ионной атмосфере с изменением расстояния от центрального иона. Расчет основывается на применении закона статистического распределения ионов в силовом поле, создаваемом центральным ионом. При этом для вычисления потенциала вместо зарядов отдельных ионов, составляющих ионную атмосферу, рассматривается соответствующее ей непрерывное электрическое поле. Плотность заряда в различных точках поля принимается пропорциональной избыточной концентрации ионов данного вида. Такая замена отдельных зарядов непрерывным полем дает возможность использовать более простые законы электростатики непрерывных сред, но искажает результат. [c.393]

    Между переменными р и ф можно получить еще другое соотношение. Рассмотрим элемент объема йи в некоторой точке внутри ионной атмосферы. Пусть центральным ионом является катион. Тогда в элементе объема йи будет некоторый избыточный отрицательный заряд  [c.253]

    Релаксационный эффект связан с существованием ионной атмосферы и ее влиянием на движение ионов. При перемещении под действием внешнего электрического поля центральный ион выходит из центра ионной атмосферы, которая вновь воссоздается в новом положении иона. Образование и разрушение ионной атмосферы протекает с большой, но конечной скоростью, характеристикой которой служит время релаксации. Это время может рассматриваться как величина, обратная константе скорости создания или разрушения ионной атмосферы. Время релаксации зависит от ионной силы раствора, его вязкости и диэлектрической проницаемости. Для водного раствора одно-одновалентного электролита время релаксации т выражается [c.261]


    Э. Гюккель). В основу этой теории положена модель раст-иора, согласно которой каждый ион окружен преимущественно противоположно заряженными ионами, располагающимися вокруг данного центрального иона в виде сферы, называемой ионной атмосферой. Реальные растворы от идеальных отличаются наличием ионных атмосфер, эффект действия которых на центральные ионы выражается энергией межионного взаимодействия. [c.11]

    При наложении внешнего электрического поля центральные ионы и ионные атмос( >еры движутся в противоположных направлениях. В идеальном растворе, где ионные атмосферы отсутствуют, сила трения пропорциональна только скорости движения ионов и,. В реальном растворе, где ионы движутся в среде, перемещающейся в противоположном направлении со скоростью сила трения пропорциональна (у, 4- У,д), т. е. появляется дополнительная сила трения, которая вызывает электрофоретический тормозя-щий эффект Ki. [c.40]

    Работа, которую надо затратить для того, чтобы вывести центральный ион из его ионной атмосферы или, наоборот, поместить центральный ион внутрь такой оболочки (при постоянном давлении), равна dFe drii) = iig, т. е. равна изменению свободной энергии Гиббса, обусловленной электростатическим взаимодействием иона i с его оболочкой. Это взаимодействие равно произведению потенциала оболочки г )а. иона i на заряд иона ipa.Zie.-Суммирование по всем ионам г-го типа в растворе привело бы к тому, что взаимодействие каждого иона г-го типа было бы учтено дважды один раз, когда данный ион рассматривается как центральный ион, и другой раз, когда этот же ион расположен на оболочке, образованной вокруг другого центрального иона. [c.448]

    С другой стороны, перемещение центрального иона и ионной атмосферы в противоположных направлениях связано с тем, что как только ион выходит за пределы ионной атмосферы, последняя должна разрушиться, а вокруг иона должна возникнуть новая ионная атмосфера. Скорость этого процесса определяется временем релаксации Тр — величиной, обратной константе скорости образования или разрушения ионной атмосферы  [c.40]

    Таким образом, при движении иона позади него в течение некоторого времени будет сохраняться старая ионная атмосфера, и образующие ее ионы за счет электростатического притяжения тормозят движение центрального иона. Этот тормозящий эффект назван релаксационным. [c.40]

    Согласно уравнениям (1.64) — (1.70) коэффициенты диффузии не должны зависеть от концентрации. Однако экспериментальные данные показывают, что с увеличением концентрации величины коэффициентов диффузии сначала падают, а затем начинают возрастать. Такое влияние концентрации объясняется проявлением сил взаимодействия между ионами, а также сольватационными эффектами. Особенность их проявления выражается в том, что центральный ион и его ионная атмосфера в диффузионных процессах перемещаются в одном направлении. В связи с этим они должны рассматриваться как своего рода ионный двойник с расстоянием между частицами 1/Х, а для оценки влияния электрофоретического и релаксационного тормозящих эффектов следует применять критерии, отличающиеся от рассмотренных при изучении электропроводности. [c.44]

    Движение центрального иона и ионной атмосферы в электрическом поле. [c.186]

    Величину г[) в соответствии с уравне 1ием (3.48) можно рассматривать как потенциал, создаваемый в точке нахождения центрально-ю нона другим ионом с противоположным знаком, находящимся от центрального иона на расстоянии 1/х- Величина 1/х называется характеристической длиной. Так как потенциал создается не единичным ионом, а всей ионной атмосферой, то 1/% можно отождествить с радиусом ионной атмосферы. Величину х> а следовательно, н характеристическую длину 1/х мо.жно рассчитать по уравнению <3.38). [c.87]

    Дебай и Фалькенгаген показали, что при достаточно боль шей частоте переменного тока взаимные смещения иона и ион Н011 атмосферы настолько малы, что ионная атмосфера иракти чески симметрична, а потому тормозящий эффект релаксации обусловленный асимметрией ионной атмосферы, должен ис чес1нуть. Время релаксации ионной атмосферы 9 есть время по истечении которого ионная атмосфера исчезает после уда ления центрального иона (и, очевидно, образуется вновь вокру иона, появивщегося в новой точке). Величина 9 (в сек) опре деляется, по теории Дебая — Фалькенгагена, уравнением [c.435]

    Для проведения расчета можно использовать модель раствора, предложенную Дебаем и Гюккелем, согласно которой каждый ион окружен ионной атмосферой со знаком заряда, противоположным заряду центрального иона. Так как сильные электролиты диссоциированы полностью (а = 1), то все изменения молярной электропроводности с концентрацией обусловлены изменением энергии взаимодействия. Тогда в бесконечно разбавленном растворе, где ионы настолько удалены друг от друга, что силы взаимодействия между ними уже не могут проявляться, ионная атмосфера не образуется, и раствор электролита ведет себя подобно идеальной газовой сн-сгсмс, В этих условиях молярная электропроводность электролита будет наибольшей и равной .  [c.121]

    Из приближенного уравнения (XV.7.6) видно, что вблизи иона на расстоянии г < 1/к потенциал складывается из двух частей кулоновского потенциала центрального иона zizlDr и — постоянного кулоновского потенциала, образованного зарядами — Zje, сферически симметрично распределенными на поверхности сферы радиусом 1/х вокруг иона z,e. Такое распределение зарядов получило название ионной атмосферы (ионное облако), а 1/х — среднего радиуса ионной атмосферы. [c.448]

    Для статистической теории электролитов исходным является следующее положение ионы распределены в объеме раствора (в каждый данный момент) не хаотически, а в соответствии сзаконом кулоновского взаимодействия их. Из этого положения методом статистической физики найдено распределение ионов различных знаков вокруг каждого отдельного иона. Таким образом, открыто существование ионной атмосферы ионного облака), имеющейся вокруг каждого иона и состоящей из ионов противоположного центральному иону знака. Это статистически неравномерное распределение в пространстве электрических зарядов разных [c.403]

    В отсутствие внешнего электрического поля ионная атмосфера симметрична и силы, действующие на центральный ион, взаимно (уравновешиваются. Если же приложить к раствору постоянное электрическое поле, то разноимённо заряженные ионы будут пере- >1ещаться в противоположных направлениях. При этом каждый [c.240]

    Если мысленно выделим в разбавленном растворе сильного электролита один центральный ион (например, катион), то ионы противоположного знака (анионы) будут чаще наблюдаться около него, чем ионы с одноименным зарядом. Такое статистическое распределение ионов вокруг выбранного центрального иона устанавливается под влиянием двух факторов 1) электростатических сил притяжения и отталкивания, которые стремятся расположить ионы упорядоченно, как в кристаллической решетке, и 2) теплового движения ионов, под влиянием которого ионы стремятся расположиться хаотически. В результате вокруг центрального иона устанавливается некоторсе промежуточное статистическое распределение ионов, так называемая ионная атмосфера. При этом около центрального иона в среднем во времени будет некоторая избыточная плотность зарядов противоположного знака, которая по мере удаления от центрального иона убывает и на бесконечно большом расстоянии стремится к нулю. Фактически уже на расстоянии нескольких ангстрем от иона величина этого избыточного заряда становится очень малой и может практически считаться равной нулю. [c.251]

    Зависимость эквивалентной электрической проводимости водных растворов сильных электролитов от концентрации в основном определяется силами межионного взаимодействия, зависящими от расстояния между ионами. В растворе электролита сольватирован-кые ионы находятся в тепловом движении и расположение их более беспорядочно, чем в кристалле. Вследствие электростатических сил между ионами даже в разбавленных растворах распределение их не может быть случайным. Притяжение разнозарядных ионов, и отталкивание одинаково заряженных должно приводить к тому, что в среднем вблизи каждого положительного иона возникнет избыток отрицательных ионов (и наоборот). Кал<дый ион окружен ионной атмосферой, заряд которой равен и противоположен по знаку заряду центрального иона (рнс. XIV. 2). Наличие ионной атмосферы вызывает взаимное торможение ионов при их движении в электрическом поле. [c.185]


Смотреть страницы где упоминается термин Ион центральный в ионной атмосфер: [c.84]    [c.84]    [c.88]    [c.122]    [c.127]    [c.146]    [c.394]    [c.434]    [c.272]    [c.50]    [c.533]    [c.439]    [c.99]    [c.252]    [c.252]    [c.252]    [c.253]    [c.262]    [c.186]   
Теоретическая электрохимия (1959) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Атмосфера, ионы

Иониты Ионная атмосфера

Ионная атмосфера

Ионы центральные



© 2025 chem21.info Реклама на сайте