Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические величины для ионов в водных растворах

    Термодинамические величины для простых веществ, соединений и ионов в водных растворах и в жидком аммиаке..................... [c.199]

    Вычислите теплоту нейтрализации при 298 К, используя данные таблицы стандартных термодинамических величин для ионов в водных растворах электролитов [М.]. [c.300]

    О склонности металлов к коррозии (о термодинамической неустойчивости) в водных растворах можно судить по величине их электродных потенциалов в сравнении с потенциалами окислителей, наиболее широко распространенных в естественных условиях (кислород, ионы водорода) и в промышленных условиях (кислоты, хлор и многие другие вещества). Электродный потенциал многих металлов отрицательнее потенциала водородного электрода. [c.223]


    При рассмотрении стабильности сольватов различают кинетическую и термодинамическую устойчивости. Кинетическая устойчивость образующихся сольватов, согласно Самойлову, определяется энергией активации процесса обмена молекул растворителя вблизи иона на молекулы растворителя в объеме. В водных растворах количественными характеристиками гидратации ионов служат величины т /x и Д ,- = —Е ( x и т — среднее время пребывания молекул воды в положении равновесия вблизи -го иона в растворе и в чистой воде E —энергия активации процесса обмена Е —энергия активации процесса самодиффузии в воде). Эти величины определяют частоту обмена молекул воды вблизи данного иона и связаны между собой приближенным соотношением [c.343]

    Термодинамические свойства ионов относятся к ключевым величинам. Они важны тем, что определяют термодинамические свойства большой группы соединений. Р.сли g° (К, р-р Н О, станд. с.) и Й°(А, р-р Н О, станд. с) — термодинамические свойства (А Н°, А/Г, 5°, Ср и т. д.) соответственно катиона 2к и аниона гд в стандартном водном растворе, то свойство электролита Кгд Агк в этом растворе будет равно сумме  [c.447]

    Значение К можно получить путем экстраполяции к нулевой ионной силе с использованием теории Дебая—Хюккеля (разд. 7.10). С помощью измеренных э. д. с. соответствующих гальванических элементов и указанной экстраполяции были определены константы диссоциации целого ряда слабых кислот при разных температурах. Из температурной зависимости константы можно рассчитать величины АЯ°, А5° и АСр, относящиеся к реакции диссоциации. Значения этих термодинамических величин для некоторых слабых кислот в водных растворах при 25° С приведены в табл. 7.1. [c.220]

    Вычислите ионное произведение воды К к = н+ Оон- при 298 К, используя данные таблицы стандартных термодинамических величин для ионов в водных растворах электролитов А(Зн,о = = — 237,25 кДж/моль. [c.300]

    Коррозионные потенциалы амальгам в растворах солей соответствующих металлов почти достигают значений обратимого потенциала легирующего компонента благодаря очень низкой скорости коррозии и отсутствию заметной анодной поляризации. Например, коррозионный потенциал амальгамы кадмия в растворе С(1504 ближе к термодинамическому для реакции Сс1 - Сс " - - 2ё, чем для чистого кадмия в этом же растворе. Стационарная скорость коррозии чистого кадмия значительно выше, чем его амальгамы, что ведет к еще большим отклонениям измеряемого коррозионного потенциала от соответствующего термодинамического значения. Вообще говоря, стационарный потенциал любого металла, более активного, чем водород (например, железа, никеля, цинка, кадмия) в водных растворах, содержащих собственные ионы, отклоняется от истинного термодинамического значения на величину, зависящую от преобладающей скорости коррозии, которая сопровождается разрядом Н+ [17]. Измеренные значения положительнее истинных. Это справедливо также и для менее активных металлов (например медь, ртуть), которые корродируют в присутствии растворенного кислорода. [c.64]


    Хотя Льюис ввел функцию активности в 1907 г., еще в начале 20-х годов ее использование для точного термодинамического исследования растворов электролитов находилось в зачаточном состоянии. Однако идея о полной ионизации сильных электролитов носилась в воздухе, и коэффициенты активности выражались через общую концентрацию ионных компонентов, а не через величины, которые по теории Аррениуса предполагались истинными концентрациями ионов. Считалось, что определенные таким образом коэффициенты активности в разбавленном водном растворе всегда уменьшаются с увеличением концентрации электролита. [c.277]

    Рассчитайте А/У°, AS°, AG° для диссоциации муравьиной кислоты в воде нрп 298 К, пользуясь справочными данными о термодинамических величинах соедипе-пин и ионов в водных растворах. [c.59]

    Упомянутыми, а также некоторыми другими более косвенными методами рассчитана мольная энтропия большого числа химических соединений, а также парциальная мольная энтропия многих ионов в водном растворе. Полученные величины приводятся в специальных справочниках термодинамических, величин. [c.193]

    В кинетическом подходе к гидратации, как и в термодинамическом, используется представление о координационном числе, имеющем, однако, несколько иной смысл под координационным числом нона в разбавленном водном растворе понимается среднее число молекул воды, составляющих ближайшее окружение иона. Оно может принимать дробные значения является статистической величиной, зависит от теплового и прежде всего трансляционного движения частиц. Кинетический подход развит для водных растворов и представляет в основном интерес для ионов, не слишком сильно взаимодействующих с ближайшими молекулами воды. Вместе с тем он обладает и достаточной общностью — прочное связывание ионами ближайших молекул воды можно представить как предельный случай уменьшения подвижности этих молекул. Подход к сольватации с кинетических позиций будет также справедлив при рассмотрении сольватации ионов во многих других растворителях. Основные положения кинетической [c.239]

    Воспользовавшись значениями стандартных энергий Гиббса образования ионов в водном растворе и термодинамическими величинами хлорида серебра, рассчитайте его растворимость в воде при 25 С. [c.94]

    Как следует из данных табл. 35, значения -потенциала отличаются от соответствующих электродных потенциалов не только по величине, но и по знаку. Потенциал Ф на границе стекло — водный раствор меняется в зависимости от концентрации ионов Н3О+ в растворе, что вполне закономерно, если иметь в виду, что стеклянный электрод ведет себя подобно водородному. Эти же ионы почти не влияют на величину электрокинетического потенциала. Наоборот, присутствие ряда других ионов, почти не изменяющих величину термодинамического потенциала ф, чрезвычайно резко влияет на -потенциал. Главную роль при этом играют зарядность и знак посторонних ионов, их электрокапиллярные свойства. Эти явления объясняются, как мы видели, в теории двойного электрического слоя. [c.248]

    Понятие pH введено датским химиком Серенсеном в 1909 г. В двух важных работах, опубликованных одновременно в Германии и во Франции, он ввел понятие о показателе ионов водорода и разработал стандартные методы определения их концентрации. С появлением термодинамического понятия активности величину pH определяют как отрицательный логарифм активности ионов водорода в водном растворе  [c.181]

    Прямая потенциометрия состоит в измерении точной величины электродного потенциала и нахождении по уравнению Нернста активности потенциалопределяющего иона в растворе. Методом потенциометрии определяют pH водных и неводных растворов, в том числе производственных растворов олигомеров анализируют кислые и основные примеси в диметилформамиде и диметилацетамиде определяют хлорид-ионы и кислотные компоненты в производственных растворах, реакционные концевые группы в олигомерах и т.д. Кроме того, метод широко используют для расчета термодинамических констант электрохимических и химических реакций. [c.300]

    Причины высокой поляризации железа многие авторы [180 - 182] видят в замедленности процесса дегидратации ионов или в разнице между энергией гидратации и его связи с кристаллической решеткой. Однако эта точка зрения вызвала возражение [183]. В.С.Иоффе произвел количественную оценку энергии гидратации ионов ряда металлов и показал, что этот взгляд на природу поляризации металлов группы железа не соответствует действительности, так как энергии гидратации,а такие энергии отрыва ионов от решетки у металлов группы желеэа мало отличаются от соответствующих энергий других двухвалентных ионов, выделяющихся иэ водных растворов или совсем беэ перенапряжения или с очень малым перенапряжением. Показано [164], что энергия гидратации-величина термодинамическая, а потому необязательно может влиять прямо на кинетику процесса. [c.57]


    Термодинамические величины для ионов в водных растворах [c.114]

    Известно, что совсем недавно под величиной pH понимали отрицательный логарифм концентрации водородных ионов PfH=—Ig величину, которую можно с достаточной точностью рассчитать для ряда растворов. Так, например, в водном растворе сильной кислоты концентрация водородных иоиов может быть приравнена к общей концентрации кислоты в связи с ее полной диссоциацией. Но величина концентраций вряд ли может быть полезной для практики, так как, с одной стороны, в большинстве исследуемых растворов ее нельзя определить экспериментально, а с другой — знание этой величины не дает возможности вычислить термодинамические свойства растворов известно, что эти свойства находятся в простой зависимости не от концентрации ионов водорода, а от их активности. В связи с этим под величиной pH теперь окончательно принято понимать отрицательный логарифм не концентрации, а активности ионов водорода p H = -lga +. [c.773]

    Когда необходимо провести строго коррективные расчеты равновесия, следует пользоваться термодинамической равновесной константой К и активностями реагирующих веществ и продуктов. К сожалению, как уже показано ранее, точно оценить коэффициенты активности (и соответственно активности) трудно, особенно для интересующих аналитиков водных растворов с относительно высокими ионными силами и с более чем одним электролитом. В таких растворах сложно оценить силы взаимодействия между растворенными веществами, а также между растворенными веществами и растворителями. Вследствие этих неопределенностей, в данной книге мы, в основном, будем пренебрегать коэффициентами активности, а также различием между К и /С. Будем допускать, что К есть величина постоянная, и использовать выражение для константы равновесия, в котором вместо активностей стоят концентрации. Такое упрощение отвечает многим приближенным вычислениям, включая те, которые необходимо проделать для предсказания возможности применения аналитических методов. [c.82]

    Справочник состоит из краткого обзора методов расчета термодинамических величин и большого числа таблиц. Таблицы содержат широкий набор сведений о термодинамических свойствах индивидуальных веществ и ионов в водных растворах.- Все данные приводятся, как правило, в единицах Международной системы (СИ) и для широкого интервала температур, что значительно расширяет возможность практического использования этой книги. [c.2]

    Разделение тг, В и rf, на ионные вклады производится в предположении о равенстве вкладов К+ и С1 . Простые ионы, которые по значениям А5 , г (разд. З.Г) и спектральным данным (разд. З.Б) относят к структурирующим, дают положительные значения В, отрицательные <1Л и времена переориентации тг, превосходящие эти величины для чистой воды. Такие ионы, следовательно, снижают вращательную и поступательную подвижность соседних молекул воды. Термодинамические и кинетические критерии в данном случае согласуются, указывая на преобладание положительной гидратации для ионов Li+, F , OH и для большинства двух- и многозарядных ионов. Полностью ли подавляется вращение молекул воды в первичной гидратной оболочке этих ионов Некоторые данные указывают на то, что для большин-- гва ионов этого в действительности нет. Время переориентации для совершенно жесткого комплекса М2+ (Н20)6 оценивается примерно величиной 10 10с при 25 °С [26]. тг для положительно гидратирован-ных катионов, хотя и превосходит значение для чистой воды, все же далеко от этого значения. Детальный анализ [430] данных по диффузии и магнитной релаксации 19F и 1Н в водных растворах фторидов также показывает, что изменение положения одного атома Н относительно другого происходит быстрее, чем изменение положения Н относительно F. Такой же результат получен для ионов лития [432]. Наконец, времена диэлектрической релаксации т , хотя и не коррелируют точно с тг, в присутствии любых ионов уменьшаются. Можно предположить, что положительно гидратированные ионы полностью иммобилизуют молекулы воды в первой координационной оболочке по тем степеням свободы, которые определяют ориентационный вклад в диэлектрическую проницаемость. Следовательно, т относятся к более удаленным молекулам воды, которые участвуют в отрицательной гидратации. Одновременное увеличение тг для этих ионов указывает на то, что некоторые из движений, существенных для релаксации 1 Н (например, вращение вокруг оси симметрия С2 молекулы воды в структуре 3), остаются не замороженными в первичной координационной сфере, тогда как движения, определяющие переориентацию электрических диполей воды, подавляются [16]. Только в случае А1 3+ равенство времен переориентации векторов Н-Н и А1—Н указывает на жесткую сольватацию в первичной координационной сфере [432]. [c.289]

    Интересны термодинамические исследования, проводимые Г. А. Крестовым [241—247]. Ои измерял теплоемкость водных растворов и на основе полученных экспериментальных результатов рассчитал энтропию растворов. Систематически исследуя связь сольватации ионов со структурой растворителей, Г. А. Крестов ввел новую энтропихгную характеристику сольватации — величину А5ц. Эта величина представляет собой приращение энтропии системы, связанное со структурными изменениями растворителя при сольватации частиц растворенного вещества. Численное значение величины А л получено для многих ионов в бесконечно разбавленных водных растворах. Оказалось, что для ионных водных растворов наблюдается знакопеременность величины В случае тех ионов, для которых отрицательна, преобладает упорядочение растворителя при сольватации. Для тех ионов, у которых AlSJJ положительна, структура растворителя разупорядочи-вается. Показано, что эти изменения связаны главным образом с действием ионов на ближайшие к ним молекулы воды раствора. Таким [c.204]

    Если кусок какого-либо металла М привести в контакт с водным раствором его соли МА, то через некоторое время на границе между металлом и раствором установится значение потенциала, которое в дальнешем будет сохраняться почти неизменным. Эта постоянная (или почти постоянная) величина отвечает либо равновесию между металлом и раствором, либо стационарности электродного процесса. Какой из этих случаев реализуется в действительности, определяется в первую очередь самой величиной электродного потенциала. Если термодинамический электродный потенциал металла имеет величину, при которой в данных условиях исключено протекание всех других ироцессов (кроме обмена металлическими иоиами между металлом и раствором), то установившаяся величина нотенциала будет отвечать его равновесному значению в данных условиях. Скорость перехода ионов металла в двух противоположных направлениях при достиженип состояния равновесия сделается одинаковой и равной току обмена  [c.488]

    Это обстоятельство позволяет выбрать в качестве отправной величины истинную термодинамическую константу диссоциации иона НзО значение которой очень важно знать при изучении водных растворов. Ради упрощения расчетов полагаем н,о + равным 55,5. Подставим это значение константы в уравнение (XVIII, 35)  [c.475]

    Согласно теории сольватации, вокруг частицы растворенного вещества расположены две сольватные оболочки первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, совершающие движение в растворе вместе с частичкой вещества. Число молекул растворителя в первичной сольватной оболочке называют координационным числом сольватации. Значение его зависит от природы растворенного вещества и растворителя. Во вторую сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на большом расстоянии. Сольватация сильно проявляется в водных растворах электролитов за счет взаимодействия ионов с полярными молекулами воды (гидратация). Термодинамическая устойчивость сольватов определяется величиной энергии Гиббса (ЛОсол)- Так как А О соя = АН СП.-,—ТА.8 СОЛ, то чем меньше АСсо.ч, тем устойчивее комплекс. Основной вклад в величину ДСсол вносит энтальпия сольватации АНсол, которую находят из соотношения [c.137]

    Величина диэлектрической проницаемости рассматривается как переменная функция напряженности электрического поля согласно теориям Дебая — Хюккеля, Онзагера и др. Микулин считает, что сопоставление теоретических термодинамических функций с экснериментальными величинами допустимо лишь для водных растворов таких электролитов, ионы которых не образуют жидких гидратов определенного состава. Б качестве такого электролита Микулин выбрал АгКОд и получил для этой солп в соответствии с развитой им теорией линейную зависимость изобарного потенциала от концентрации (е). Пример, выбранный Микулиным для подтверждения теории, не совсем удачный, так как AgNOз является слабой солью, диссоциация которой подчиняется закону действия мас чем п объясняется линейная зависимость между термодинамическими функциями ж Vс. В дальнейших работах Микулин учитывает влияние гидратации ионов на зависимость термодинамических функций от концентраций. [c.86]

    Исследование механизма сорбции фенола этим анионитом показало, что в основе его лежит процесс комплексообразования, а не ионный обмен. Исследование механизма сорбции ванилина анионитом МВП-3 и расчет термодинамических функций этого процесса позволили разработать промьпиленный способ выделения ванилина из производственных растворов [35]. Была исследована также сорбция различных производных фенола (гваякола, бензальдегида, ванилина, салицилового а пттдрида) с помощью этого анионита из водных и спир-то-водных растворов [16]. Изучено также влияние их строения и положения заместителей на величину сорбции. Изотермы сорбции исследованных соединений (кроме гваякола) имели вид изотермы сорбции Лэнгмюра. Установлено влияние на сорбцию и ее избирательность меж и внутримолекулярных водородных связей. [c.212]

    В формуле (4.51) величину /С,, выраженную через действующие массы вместо концентраций комплексов и лигандов, называют термодинамической константой равновесия. Для пересчета концентраций в действующие массы используются усредненные коэффициенты действующих масс, ио поскольку они зависят от ионной силы растворов, это обстоятельство следует иметь в виду. Величину Кц, выраженную через коицеитрацни с учетом этого фактора, называют условной константой равновесия. Кроме того, для бидентат-иых лигаидов К1 имеет размерность М . Прн рассмотрении только водных растворов концентрация воды может быть принята постоянной и равной 55,5 М, а прн рассмотрении и неводных растворов необходимо учитывать размерность константы равновесия. [c.242]

    Ларсен и Виссарс [33] попытались получить данные о свободных энергиях, теплотах и энтропиях обмена для катионов Ыа+ и на фосфате циркония в №-форме. Они использовали образцы фосфата циркония, полученные путем медленного осаждения из раствора 2гОС12 в НС1. При длительном промывании водой образцы теряли часть фосфата до Р04 2г = 1,16. Опыты проводились в статических условиях в 0,1005 н. солянокислых растворах соответствующих хлоридов щелочных металлов при температурах от 1,17 до 44,5° катион щелочного металла замещался ионом меди с целью последующего анализа. Термодинамическая константа равновесия К была получена интегрированием кривой зависимости lg/( от состава ионообменника (стр. 40), при этом предполагали, что результаты могут быть проэкстраполированы на весь интервал изменения состава ионообменника. Изменение свободной энергии рассчитывалось по формуле А0° = —ЯТ пК, а изменение энтропии— из соотношения АС° = АЯ° — 7 А5<, где изменение теплоты обмена А//° было получено из изохоры Вант-Гоффа для соответствующих значений К при различных температурах. Полученные данные (табл. 30) количественно выражают ряд сродства, установленного с помощью коэффициентов распределения, причем АС° становится отрицательным с уменьшением гидратированного ионного радиуса. Значения А5° близки к величинам относительных энтропий ионов в водных растворах [78]. Надежность этих данных не ясна вследствие значительного числа экс- [c.160]

    Икеда и Исемура 169] показали, что результаты, которые были выведены из электростатической теории, получаются и из простых термодинамических соображений, если рассматривать нерастворимый монослой как своеобразный двумерный поверхностный раствор, из молекул, не содержащих неполярных боковых цепей. Эти слои развивают поверхностное давление, необходимое для поддержания термодинамического равновесия с объемной фазой. Таким образом, можно принять, что если монослой образован электролитом, его ионные группы растворяются и равномерно распределяются в поверхностной фазе некоторой определенной толщины б, а ионы соли в водной подложке распределяются между поверхностной и объемной фазами при этом противоион концентрируется в поверхностной фазе, а сопутствующий ион вытесняется из нее в объем. Выражение для распределения ионов между фазами получается тем же путем, что и при рассмотрении мембранного равновесия, однако с некоторыми упрощениями. Возникающая в результате ионизации монослоя разность концентраций ионов между двумя фазами влияет на величину поверхностного давления, и это влияние может быть учтено термодинамически. [c.314]

    На электроосаждение оказывают влияние следующие явления, связанные с комплексообразованием 1) термодинамический эффект, или сдвиг равновесного потенциала 2) кинетический эффект, или изменение обменного тока. Термодинамический эффект заключается всегда в сдвиге потенциала в отрицательную сторону, следовательно, он затрудняет осаждение [см. уравнение (15-506)]. Кинетический эффект может быть направлен в любую сторону, так как скорость обмена электронами между электродом и комплексом может быть как больше, так и меньше скорости обмена между электродом и гидратированным ионом. В самом деле, если разряд гидратированного иона сопровождается возникновением высокого сверхпотенциала вследствие очень малой величины обменного тока, образование комплекса может настолько повысить обменный ток, что происходящее ири этом падение сверхпотенциала более чем компенсирует сдвиг равновесного потенциала. В этом случае осаждение лучше проводить из раствора комплекса, а не из водного раствора, содержащего гидратированные ионы металла. Прекрасным примером может служить электроосаждение никеля, разряд гидратированных ионов которого на ртутном капельном электроде происходит при величине сверхпотенциала более 0,5 в. В присутствии комплексанта, иапример тиоцианата, пиридина или больших концентраций хлорида, никель восстанавливается значительно легче. [c.344]

    Определенную помощь для уменьшения расходов и времени на коррозионный прогноз может оказать программа для проведения прогноза коррозионной стойкости нержавеющих сталей в водных сульфатсодержащих средах [102]. Программа учитывает влияние шести независимых факторов коррозии температуру, pH среды, скорость движения водного раствора, концентрацию растворенного кислорода и ионов Ре + и С1 . Для определения коррозионного состояния системы используются термодинамические и экспериментальные параметры данной системы, а также эмпирические зависимости. Программа включает прогнозирование потенциала металла системы, силы тока коррозии, хода поляризационных кривых, области иммунности (активную и пассивную), она позволяет находить наиболее неблагоприятные сочетания условий, обеспечивающие развитие коррозии. Авторы наметили пути усовершенствования программы прогнозирования коррозии, что должно повысить точность и достоверность прогноза для величин, характеризующих корродирующую систему. [c.178]

    Как уже отмечалось, термодинамические сюйства воды и термодинамические характеристики гидратации ионов содержат информацию о диффузионно-усредненной структуре растворителя (воды) и ее изменениях под влиянием растворенных частиц. Было показано также, что структурное состояние воды оказывает существенное влияние на протекание процессов растворения веществ и гидратации ионов. В связи с этим представляет значительный интерес разработка методов нахождения вкладов в термодинамические функции гидратации, которые бы характеризовали структурные изменения воды в указанных ионных процессах. Концепция структурных вкладов получила довольно широкое распространение при интерпретации термодинамических свойств водных растворов. Уровень современного развития теории растворов не позволяет пока производить теоретическую оценку структурных вкладов. Поэтому они определяются как разность между экспериментально найденными величинами и суммой неструктурных вкладов, оцениваемых на основе соответствующих модельньгх представлений. [c.148]


Смотреть страницы где упоминается термин Термодинамические величины для ионов в водных растворах: [c.273]    [c.242]    [c.231]    [c.349]    [c.369]    [c.160]    [c.32]    [c.387]    [c.113]   
Краткий справочник физико-химических величин (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Величина pH раствора

Раствор ионный

Термодинамические ионов



© 2025 chem21.info Реклама на сайте