Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытия, коррозия магниевые

    Если проанализировать данные, полученные в морских атмосферах (табл. 18), то при сохранении общей закономерности, наблюдаемой в промышленной атмосфере, выявляются некоторые особенности, характерные, очевидно, лишь для морских атмосфер. Магниевый сплав МЛ5 и в морских атмосферах является анодом, однако степень усиления коррозии, а также влияние катода становятся несколько иным. Во-первых, нет заметной разницы во влиянии покрытия стали в контакте с оцинкованной и с кадмированной сталью коррозия МЛ5 увеличивалась в 10—15 раз. Во-вторых, обнаружено, что контакт магниевого сплава с алюминиевым (В95), который в промышленной атмосфере не сильно увеличивал коррозию, приводил в морских атмосферах к заметному увеличению скорости коррозии магниевого сплава (в 6 раз — у Черного моря и в 13 раз — у Баренцева). [c.122]


    Особенно усиливает коррозию магниевых сплавов контакт со следующими металлами медью, медными сплавами, никелем, никелевыми сплавами, свинцом, всеми марками стали, в том числе и нержавеющей, серебром и его сплавами, молибденом. В жестких условиях эксплуатации, например в морской атмосфере или тропических условиях, не допускается контакт магниевых сплавов с цинком, цинковыми покрытиями. [c.243]

    Рнс. 3.3 Зависимость скорости коррозии магниевых сплавов от продолжительности воздействия воздуха 98%-ной влажности под покрытиями иа основе сополимеров полибутилметакрилата  [c.115]

Рис. 3,4. Зависимость скорости коррозии магниевых сплавов от продолжительности воздействия паров 26 /о-ного раствора соляной кислоты на покрытия и свободные пленки сополимера полибутилметакрилата Рис. 3,4. <a href="/info/317351">Зависимость скорости коррозии</a> <a href="/info/81345">магниевых сплавов</a> от <a href="/info/1893840">продолжительности воздействия</a> паров 26 /о-ного <a href="/info/56032">раствора соляной кислоты</a> на покрытия и <a href="/info/8885">свободные пленки</a> сополимера полибутилметакрилата
    Широко применяемая на практике катодная защита магниевыми протекторами резервуаров (с эмалевыми покрытиями) с горячей водой представляет собой экономичную систему защиты от коррозии (рис. 21.1). [c.402]

    Во избежание коррозии зону контакта магниевых сплавов со сталью с анодным покрытием изолируют прокладками из инертных материалов. [c.84]

    Несмотря на разность потенциалов цинк и кадмий являются равноценными по защитному действию от контактной коррозии даже в случае контакта с магниевыми сплавами. Коррозионная стойкость кадмиевых и цинковых покрытий приведена в табл, 8 [15]. [c.86]

    Титан как сильно электроотрицательный металл, является активным катодом в гальванической паре с железом, медью, алюминием, цинком. Контакт с титаном ускоряет коррозию углеродистой стали, латуни, алюминиево-магниевых и медно-никелевых сплавов. В паре с платиной титан пассивируется, что позволяет использовать его как основу под покрытие платиной и другими благородными металлами [36]. [c.112]

    Предлагается использовать алюминиевые покрытия, полу-чен.чые из эфирной ванны, для защиты от коррозии урановых стержней в реакторах [85], а также для защиты различных магниевых сплавов, которые перед осаждением алюминия обрабатываются в водном растворе пирофосфата цинка [78]. [c.26]


    Основное назначение ПИНС группы 3 — консервация топливной системы самолетов и вертолетов (без расконсервации), наружных поверхностей авиационных двигателей после полета, запасных частей, точных и особо точных изделий, замков легко--вых автомобилей, насосов, компрессоров, приборов и т. п. Перспективно использование ингибированных масел для защиты от коррозии тонкого листа сельскохозяйственной техники алюминиевых и магниевых сплавов, дополнительной защиты термостойких органосиликатных покрытий [129, 133]. Как правило, защитные пленки ПИНС-РК отличаются от пленок рабоче-консервационных и консервационных масел несколько большим уровнем адгезионно-когезионных сил (примерно, в два-три раза, т. е. 2—5 Па) и более высоким уровнем защитных свойств. Это объясняется тем, что в состав жидкой основы ПИНС вводят загущающие присадки — 0,1—5,0% (масс.), а общее содержание [c.180]

    При необходимости контакта магниевых сплавов с алюминиевыми вредное влияние контакта устраняется посредством анодирования алюминиевых сплавов в серной кислоте и покрытия их цинкхроматным грунтом, например АЛГ-1. Магниевые детали при этом оксидируют химическим или электрохимическим способом и покрывают цинкхроматным грунтом. Для уменьшения контактной коррозии можно алюминиевые детали также оцинковать, поскольку контакт магния с цинком является наименее опасным. Встречаются, однако, указания, что названные выше предосторожности надо применять лишь тогда, когда магниевые сплавы контактируют с алюминиевыми сплавами, содержащими медь. Во всех остальных случаях достаточно наружные поверхности покрыть двумя слоями цинкхроматного грунта и слоем эмали, т. е. применить такие же средства защиты, какие приняты для защиты при контакте магниевых сплавов. [c.139]

    Применение цинковых или кадмиевых прокладок, покрытие цинком или кадмием медных сплавов при контакте их со сталью, а также цинкование или кадмирование стальных деталей при контакте с алюминиевыми сплавами, по-существу, также основано на принципе электрохимической защиты. В обоих случаях в систему медь — железо и железо — алюминий включают третий анод (цинк или кадмий), смещающий потенциал к таким значениям, при которых коррозия контактирующих анодов уменьшается или оказывается равной нулю . Этим методом широко пользуются в технике, что было иллюстрировано выше на конкретных примерах защиты магниевых и алюминиевых сплавов, а также судостроительных конструкций. В частности сообщается, что металлизация судостроительных сталей цинком обеспечивает надежную их эксплуатацию в контакте с алюминиевыми сплавами в течение длительного времени (5—8 лет). [c.198]

    Коррозия под напряжением оцинкованных образцов. После подготовки поверхности образцов из магниевого сплава на них наносилось цинковое покрытие в стандартной цианистой ванне затем проводилось пассивирование в растворе серной кислоты и [c.189]

    Стандарт устанавливает методы ускоренных испытаний магния и магниевых сплавов без защитных покрытий на общую коррозию для получения сравнительных данных о коррозионной стойкости сплавов [c.637]

    Магниевые сплавы, обладающие высокой удельной прочностью, инертны по отношению к водороду. Возможна их защита от атмосферной коррозии с помощью оксидных и лакокрасочных покрытий. [c.415]

    Марганец входит в состав многих сплавов. Сплав манганин состоит из марганца, меди и никеля. Манганиновая проволока с изменением температуры почти не меняет электрическую проводимость, что используется при изготовлении катушек сопротивления. Сплавы меди с марганцем применяют для изготовления турбинных лопаток, а марганцовые бронзы — при производстве пропеллеров. Марганец содержат многие алюминиевые и магниевые сплавы. Гальванические покрытия марганцем применяют для защиты изделий от коррозии. [c.254]

    Суперфосфатная группа удобрений образует растворы различной кислотности (рН=2), вызывая общее поражение большинства металлов, включая магниевые сплавы и местную точечную коррозию металлов алюминиевых сплавов. Эти удобрения поражают в различной степени покрытую лаком ткань и соединения из спрессованного цемента. [c.251]

    Серьезной проблемой являются контакты, включающие магниевые сплавы. Лабораторные эксперименты, а также результаты естественных испытаний, изложенные выше, показывают, что магниевые сплавы должны подвергаться усиленной коррозии в агрессивных атмосферах, в контакте с большинством металлов. Только алюминий, цинк и олово, защищенные хорошими органическими покрытиями, не вызывают усиленной коррозии магниевых сплавов. Правда, высказываются сомнения, что при такой высокой разности потенциалов и значительных коррозионных токах обычные органические покрытия вряд ли способны пода-130 [c.130]

    Магний обладает низкой коррозионной стойкостью. Окисная пленка, обра зующаяся на его поверхности, недостаточно прочна и не защищает его от коррозионного воздействия. Чистый магний достаточно химически устойчив в растворах фтористоводородной кислоты и в щелочах. Большинство других сред, как-то водный раствор кислот и солей, действуют на него разрушающе. Для предохранения от коррозии магниевых сплавов применяется оксидирование и покрытие соответствующими лаками. [c.435]


    Из табл. 9 видно, что все обычно применяемые металлы вызывают сильную коррозию магниевого сплава в электролитах с большой концентрацией С К. Кадмиевое или цинковое покрытие катодных металлов, например стали, в 10 раз снижает гальваническую коррозию. Уменьшение электропроводности, например замена 3 /о раствора N301 водопроводной водой, дает еще большее снижение скорости коррозии. При таких условиях, когда продукты коррозии не удаляются непрерывно, или при высокой плотности катодного тока, когда окружающая среда может стать сильно щелочной, как магний, так и соприкасающийся с ним металл, окислы которого амфотерны (например, алюминий), могут подвергаться сильной коррозии. [c.149]

    Однажды в качестве грунтовочного покрытия детллей из магниевых сплавов применили краску, содержащую металлическую цинковую пыль. Цинковая пыль, хорошо предохраняя стальные детали от коррозии, резко ускорила коррозию магниевого сплава. Следовательно, выбор пигментов для антикчррозионного грунта требует зГшния" их поведения в контакте с металлом. [c.18]

    Ванадиевая коррозия снижается с помощью специальных присадок и путем диффузионного покрытия сталей. Лучшими присадками признаны MgO, MgS04, глина, кил, каолин, аммиак и растворимая в топливе магниевая соль окисленного петролатума. Магниевые присадки оказывают наибольшее [c.270]

    Оксидное Сталь, медь и ее сплавы, магниевые сплавы Защитные свойства невысокие, повышаются при обработке покрытий маслами, лаками, гидрофобизирующими жидкостями Межоперационнор хранение декоративная, отделка и защита рт коррозии (медь, магний и их сплавы) [c.373]

    Оксидное анодизаци- онное Алюминий и его сплавы медь и ее сплавы магниевые сплавы титан и его сплавы Твердость покрытия на алюминии и его сплавах 28-44 НВ, электроизоляционные покрытия имеют пробивное напряжение до 600 В электрическая прочность возрастает при пропитке покрытия лаками эматале-вые пленки на алюминии и окисные на титане обладают износостойкими свойствами Защита от коррозии, придание электроизоляционных свойств получение светопоглощающей поверхности (медь), защита от задиров при трении (титан), грунты под окраску [c.373]

    К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6). [c.188]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Судостроение, а позднее и сооружение портов являются одними из старейших областей применения катодной защиты от коррозии (см. раздел 1.3). Для судов и сооружений, располагаемых в прибрежном шельфе, пока применяют преимущественно протекторную защиту, тогда как для портовых сооружений и мостовых перегружателей ввиду потребности в большом защитном токе предпочитают применять станции катодной защиты. Характерные проблемы коррозии для сооружений в прибрежном шельфе встретились уже в середине 1950-х гг. в Мексиканском заливе. Однако скорость коррозии здесь была меньшей по сравнению с наблюдаемой в Северном море (см. табл. 17.2). В допол-нение к этому на передний план все более выступают проблемы усталостного коррозионного растрескивания [13]. В отличие от свайных причалов н судов, на сооружениях в прибрежном шельфе в большинстве случаев не применяют никаких защитных покрытий или используют только временные покрытия. Защита от коррозии обеспечивается по катодной схеме. Значение токоотдачи (в ампер-часах) протекторов из алюминиевых, магниевых и цинковых сплавов согласно данным табл. 7.2—7.4 относятся как 3,1 1,4 1. Напротив, цена этих протекторов (в марках за 1 кг) относится как 1,3 2,8 1, так что удельные затраты в марках ФРГ на 1 А-ч находятся между собой в соотношении 1 2,4 4,7 и наиболее выгодными оказываются алюминиевые протекторы. Многолетние наблюдения за протекторами трех типов в Мексиканском заливе показали, что затраты на них относятся между собой как 1 3,5 2 [13]. Таким образом, магниевые протекторы для использования в прибрежном шельфе неэкономичны. Защита цинковыми протекторами обходится дороже защиты алюминиевыми протекторами. [c.421]

    Исследования показали, что химической коррозии подвергаются главным образом детали топливных агрегатов реактивных двигателей, изготовленные из сплавов меди, и детали, имеющие кадмиевые покрытия. Из сплавов меди наименее устойчивой является бронза ВБ-24, из которой изготовляются ротора некоторых топливных насосов. Образующиеся под влиянием меркаптанов продукты коррозии этой бронзы быстро забивают топливные фильтры [1181. В реактивных топливах коррозии подвергаются также медь М-1 и М-3, свинец С-2, дюралюминий Д1Т, свинцовистая бронза, медно-трафитовый сплав и магниевый сплав МЛ-5. Интенсивность химической коррозии возрастает при увеличении нагрева топлива, степени перемешивания, продолжительности его контакта с металлом и повышении объема контактирующего топлива [119—121]. [c.35]

    Галоидуглеводороды в отсутствии воды не взаимодействуют с большинством металлов, однако при наличии влаги они вызывают сильную коррозию металлов, что необходимо учитывать при зарядке пожарной аппаратуры. Жидкая фаза состава 4НД корродирует стальные пластины (сталь марки 3) со скоростью 0,01 г/ м .ч), что соответствует оценке стойкие . Сухой бромистый этил в жидкой и паровой фазе незначительно корродирует цветные металлы медь, латунь, свинец. Однако алюминиево магниевые сплавы энергично реагируют с бромистым этилом. Для защиты аппаратуры от корродирующего действия галоидуглеводородов можно применять хромированные или кадмированные покрытия. По литературным данным, за рубежом для этих целей используют покрытая из лака или свинца. Из прокладочных материалов наиболее устойчивы к действию углеводородов фторопласты 3 и 4. Фибра хорошо сохраняется в парах бромистого этила, но при контакте с жидкой фазой набухает и разрушается. При длительном воздействии бромистого этила резина набухает и разрушается, текстолит и гетанакс не изменяют своих свойств. Для изготовления прокладок, соприкасающихся с жидкой фазой огнетушащих составов, можно использовать паронит. Полиэтилен нецелесообразно применять в аппаратуре и емкостях для хранения бромистого этила и отставов на его основе, так как они диффундируют через него. [c.81]

    При выборе покрытия для катодного металла который предполагается законтактировать с магниевым сплавом, предпочтение следует отдать цинку. При контактировании алюминиевых сплавов и трехслойного покрытия по железу с оцинкованной сталью последняя оказывается анодом. По степени увеличения коррозии оцинкованной стали на первом месте стоит трехслойное покрытие по железу (железо-медь-никель-хром), на втором — анодированный сплав Д16 и на последнем — сплав АМц. [c.120]

    При невысокой коррозионной стойкости магниевых материалов для расширения Области их применения необходимы мероприятия по защите от коррозии. Этой цели служат вещества, добавляемые к коррозионной среде и подавляющие или ослабляющие коррозию—хроматы, ванадаты, сульфиды и фториды щелочных металлов. Применяются также анодная обработка и лакокрасочные покрытия используются и металлические покрытия. В последнем случае благодаря нанесению промежуточного цинкового слоя уст-р-аняется опасность усиленной коррозии магния при неплотном нанесении металлического слоя или при нарушении целостности покрытия. [c.550]

    При плохой подготовке поверхности для консервации на стальных и чугунных изделиях продукты коррозии появляются в виде налета ржавчины оранжево-бурого цвета, которая при сильном распространении переходит в сплошную массу наростов бурого или коричневого цвета продукты коррозии могут также иметь вид темных пятен или точек. На изделиях из алюминиевых и магниевых сплавов продукты коррозии имеют вид пятен или порошкообразного налета белого цвета при дальнейшем развитии коррозии появляются раковины, обычно заполненные продуктами коррозии (белого и серого цвета). На меди и медных сплавах продукты коррозии появляются в виде темных пятен или налета зеленого, реже черного цвета. В сплавах меди со свинцом (свинцовистая бронза) продукты коррозии имеют вид налета черного, темно-или светло-зеленого цвета. На лакированных или окрашенных изделиях появившиеся на поверхности металла продукты коррозии вызывают вздутие пленки, а затем шелушение ее. На йоверхности стальных оксидированных и фосфатированных изделий продукты коррозии появляются в виде ржавчины оранжево-бурого цвета или в виде пятен и точек по цвету мало отличающихся от цвета поверхности металла. На оцинкованных изделиях продукты коррозии на покрытии имеют вид пятен или точек белого, серого цвета или белого порошкообразного налета. [c.22]

    Магний химически активный металл. Он легко восстанавливает при нагревании окислы ряда металлов, таких как бериллий, кремний, бор и др. Он также восстанавливает хлористые соединения титана, циркония, урана и некоторых других металлов. Магний легко растворяется в разбавленных минеральных кислотах, с трудом — в концентрированной серной кислоте, а магний высокой чистоты совсем не растворяется" в плавиковой кислоте. Водные растворы щелочей при нагревании действуют на магний разрушающе. Коррозионная стойкость магния и сплавов на его основе зависит от примесей хлористых солей, а также от примесей железа (выше 0,017%).. Добавка к магнию марганца, кальция, бериллия существенно снижает склонность к коррозии. Для предотвращения коррозии изделия из магниевых сплавов 5ащищают пассивацией поверхности лакокрасочным покрытием и т. п. [c.6]


Смотреть страницы где упоминается термин Покрытия, коррозия магниевые: [c.402]    [c.169]    [c.128]    [c.310]    [c.572]    [c.177]    [c.190]    [c.177]   
Коррозия и защита от коррозии (1966) -- [ c.586 , c.587 ]




ПОИСК





Смотрите так же термины и статьи:

Магниевый ИСМ



© 2025 chem21.info Реклама на сайте