Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа диссоциации зависимость

Рис. 60. Зависимость константы диссоциации воды от температуры t ( С) Рис. 60. <a href="/info/263529">Зависимость константы диссоциации воды</a> от температуры t ( С)

    Вычислим степень и константу диссоциации слабого электролита на примере уксусной кислоты с учетом зависимости подвижности ионов от их концентрации (ионной силы) и отклонения от закона действия масс. [c.467]

    Влияние температуры на степень диссоциации электролита можно описать точными и строгими термодинамическими соотношениями. При данной концентрации электролита степень его диссоциации связана с константой диссоциации уравнением (152.7). Температурная зависимость констант диссоциации выражается уравнением изобары реакции (77.2). Нередко температурная зависимость констант диссоциации выражается кривой с максимумом. Так, например, константа диссоциации муравьиной кислоты максимальна при 24,4°С, уксусной — при 22,5°С и т. д. При температуре, соответствующей максимуму этой кривой, тепловой эффект диссоциации становится равным нулю. [c.437]

    В табл. 17-4 приведены значения стандартной свободной энергии для реакции диссоциации SO3 при различных температурах, вычисленные по экспериментальным данным о константе диссоциации. По мере повышения температуры стандартное изменение свободной энергии для рассматриваемой реакции становится все более отрицательным, а константа равновесия возрастает, и для установления равновесия реакция должна все более смешаться вправо. Приведенные в этой таблице данные позволяют определить теплоту и энтропию реакции. Для того чтобы понять, как это делается, разделим левую и правую части уравнения (17-13) на Т, при этом получится соотношение AG°/T = АН°/Т — AS°, называемое уравнением Гиббса-Гельмгольца. Если воспользоваться этим уравнением и построить график зависимости величины AG°/T от 1/7 то тангенс угла наклона графика к оси абсцисс в каждой точке графика дает значение АН° при соответствуюшей температуре. [c.110]

    Рассмотрим зависимость диссоциации от присутствия постороннего электролита. Здесь надо различать два случая первый — когда один из ионов одинаков у обоих электролитов, и второй — когда одноименных ионов у них нет. В первом случае это влияние обычно бывает более сильным. Ввиду того, что свойства свободного иона не зависят от его происхождения, в константы диссоциации каждого из этих электролитов будет входить суммарная концентрация (или активность) общего иона. В соответствии с этим степень диссоциации слабой кислоты в растворе резко уменьшается при прибавлении к раствору сильной кислоты. Обратное же влияние не может быть значительным. [c.391]


Рис.4.3. Зависимость температуры кипення и констант диссоциации от удельного коэффициента поглощения для замещенных нитрофенолов Рис.4.3. <a href="/info/33814">Зависимость температуры кипення</a> и <a href="/info/4777">констант диссоциации</a> от <a href="/info/5414">удельного коэффициента поглощения</a> для замещенных нитрофенолов
    Определите температуру, при которой диссоциация муравьиной кислоты в водном растворе максимальна. Уравнение зависимости константы диссоциации НСООН от температуры имеет вид [c.302]

    В связи с этим, а также с уменьшением объема аудиторных часов особое значение приобретает самостоятельная работа студентов. С этой целью был разработан ряд индивидуальных заданий для студентов технологического факультета УГНТ по расчету кривых титрования с обоснованием способа титрования, выбором индикаторов и расчетом индикаторных ошибок. Перед хорошо успевающими студентами ставится более сложная задача, требующая применения знаний по математике и информатике. Им было предложено составление программ для расчета кривых титрования кислотно-основного, окислительно-восстановительного титрования с оформлением их в виде таблиц и графических зависимостей. В ходе расчета задаются константы, характеризующие реагенты константа диссоциации, стандартные окслительно-восстановительные потенциалы и концентрации растворов. Результаты расчетов наглядно иллюстрируют зависимость изменяющихся характеристик раствора от перечисленных выше факторов и их влияние на вид кривых титрования и могут быть использованы при изучении теоретического материала на занятиях. [c.173]

    Степень электролитической диссоциации так же, как и константа диссоциации, зависит от природы компонентов раствора, его концентрации и температуры. Для бинарного слабого (а <0,05) электролита типа КА существует зависимость, названная законом разбавления Оствальда  [c.153]

    Зависимость константы диссоциации от температуры описывается уравнением [c.278]

    Степень ионизации активных групп зависит главным образом от их химической природы и от свойств внешнего раствора (жидкой фазы). Так, например, катиониты, содержащие активные сульфогруппы, хорошо ионизуются и поэтому осуществляют обмен в широком интервале pH. Такая группа, как карбоксильная, в нейтральных или кислых средах большей частью находится в недиссоциированном состоянии в виде —СООН. В зависимости от константы диссоциации катионита в водородной форме (Н-форме) различают сильнокислотные и слабокислотные иониты. Как будет показано далее, синтез дифенилолпропана катализируется сильнокислотными ионитами. К ним относятся катиониты КУ-1, СБС и КУ-2, выпускаемые в СССР в промышленном масштабе. [c.143]

Рис. 59. Зависимость константы диссоциации К некоторых слабых электролитов в водных растворах от температуры i (X) Рис. 59. <a href="/info/263498">Зависимость константы диссоциации</a> К <a href="/info/1637463">некоторых слабых</a> электролитов в <a href="/info/6274">водных растворах</a> от температуры i (X)
    Ha основании справочных данных о зависимости электрической проводимости слабого электролита А от разведения при 298 К [М.], постройте график зависимости X = /(с) и определите к при с = 6 х X 10 моль/л. Рассчитайте степень диссоциации а электролита А при концентрации 6 10 моль/л. Сравните найденную величину с рассчитанной по закону разведения Оствальда (константу диссоциации электролита А возьмите из [М.]). Определите концентрацию ионов Н+ и pH в растворе электролита А при концентрации 6 10 моль/л  [c.312]

    К началу XX в. теория электролитической диссоциации достигла больших успехов. На ее основе были объяснены многочисленные и разнообразные экспериментальные данные по электропроводности растворов, осмотическому давлению, температурам замерзания и другим физико-химическим свойствам растворов. Однако ряд экспериментальных данных теория объяснить не могла. Так, константа диссоциации электролита, выражаемая уравнением типа (152.4), в широком интервале концентраций изменялась. Особенно резкая концентрационная зависимость наблюдалась у водных растворов неорганических кислот, оснований и их солей (H2SO4, НС], NaOH, K l и т. п.). Разные экспериментальные методы часто приводили к неодинаковым значениям степени диссоциации электролита в одних и тех же условиях. [c.431]

    В зависимости от соотношения констант диссоциации, образующихся при гидролизе кислоты и основания, растворы солей этого типа могут иметь слабокислую или слабощелочную реакцию, т. е. pH близко к 7. [c.266]

    Для реакции диссоциации муравьиной кислоты (НСООН)ад = = Н+ + НС(Х) дана зависимость константы диссоциации от температуры  [c.300]

    Многоосновные кислоты. Константы вторичной и третичной диссоциации. Зависимость характера преобладающих в растворе частиц от pH. [c.206]


    В зависимости от соотношения констант диссоциации, образующихся при гидролизе кислоты и основания, растворы солей этого типа могут иметь слабокислую или слабощелочную реакцию, т. е. pH близко к 7. Этот тип гидролиза характерен для солей, образованных слабым основанием н слабой кислотой. [c.204]

    Титрование многоосновной кислоты (или ее средней соли) до кислой соли. Кроме рассмотренных определений, имеется ряд других определений, как титрование солей слабых неорганических оснований (например Al l,) с образованием нерастворимого основания, титрование некоторых комплексных ионов (например SiF,.--) и т, д. Наиболее часто применяется титрование многоосновных кислот (или их средних солей) с образованием в точке эквивалентности кислой соли. Ранее было показано, что кислые соли могут иметь как кислую, так и щелочную реакцию, в зависимости от соотношения ступенчатых констант диссоциации. Поэтому для выбора индикатора необходимо в каждом отдельном случае рассчитывать pH соотЕСТствую-щей кислой соли. [c.313]

    Константа диссоциации слабой кислоты НА = Н+ + + А в зависимости от температуры >1зменяется в соответствии со следующим уравнением  [c.307]

    Следовательно, построив зависимость aji от l/[So], можно определить константу диссоциации фермент-субстратного комплекса Ks- [c.86]

    Диссоциацию и тем самым силу кислоты обычно выражают константой диссоциации к, выведенной из закона разведения , показывающего зависимость диссоциации слабой кислоты от ее концентрации. Эта зависимость вытекает из следующих рассуждений. [c.243]

    Появление перегиба на кривой потенциометрического титрования в зависимости от концентрации и константы диссоциации кислот или оснований [c.68]

    Величины произведения растворимости осадка и константы диссоциации соответствующей кислоты обычно известны поэтому из уравнения (8) можно вычислить величину константы равновесия. Зная эту величину, можно вычислить растворимость осадков в зависимости от кислотности раствора. Несколько типичных задач рассматривается в приведенных ниже примерах. [c.41]

    В ряде случаев колоколообразная зависимость эффективных кинетических параметров от pH имеет острый максимум (без плато) (рис. 107). Это означает (см. уравнение 6.183), что численные значения констант диссоциации ионогенных групп, контролирующих ферментативную реакцию Кл и К в на схеме 6.177), близки, так что раздельное определение этих констант каким-либо из перечисленных графических методов не представляется возможным. В этом случае для определения значений констант диссоциации (а также истинных, не зависящих от pH значений кинетических или равновесных параметров ферментативной реакции) анализ экспериментальных данных следует проводить следующим методом (на примере выражения 6.183)  [c.263]

    Вычислите энтропию реакции диссоцизции Д5днсо при 298 К и энтропию иона НСОО , если энтропия НСООН в разбавленном водном растворе S(н ooн)aq = 163,8 Дж/моль, а зависимость константы диссоциации муравьиной кислоты от температуры выражается уравнением [c.215]

    Для случая солн, образованной слабой кислотой и сильным основанием, константа гидролиза связана с константой диссоциации кислоты /Скнсл зависимостью  [c.259]

    Однако для данной пары ионов, образующих кислоту или основание, зависимость константы диссоциации К от диэлектрической постоянной среды Z), определяется при Т = onst уравнением [1б1  [c.41]

    С позиций карбонийионного механизма Уитмора, скорость изомеризации связана с константой диссоциации кислоты. Если сравнивать -ряд кислот одного типа Н+А, Н+А, . .. и т. д., для этого ряда зависимость потенциальной энергии от межатомного расстояния Н—А будет одинакова. Потенциальные кривые для реакций олефина (О) с кислотами [c.93]

    По данным зависимости константы диссоциации Kz иона HSO4 от температуры вычислите AG°, АН°, Д5°, АС°р реакции при 298 Ks [c.211]

    По данным зависимости константы диссоциации /Сг иона HSO4 от те пературы вычислите AG°, АН°, AS°, АСр реакции при 298 К HSO = Н + SOf  [c.290]

    Зависимость константы диссоциации масляной кислоты С3Н7СООН от температуры выражается уравнением [c.55]

    Б. Графический вариант. Кривая зависимости оптической плотности от pH (рис. 21) будет иметь участок крутого подъема, соответствующий области pH, где происходит диссоциация, ограниченный двумя горизонтальными прямолинейными участками в области низких pH, где не происходит диссоциации, и высоких значений pH, где реагент находится в практически полностью диссоциированной форме. Перпендикуляр, опущенный из середииы участка крутого подъема на ось абсцисс, дает численное значение обратного логарифма константы диссоциации реагента. Это видно из уравнения (17)  [c.64]

    Для проведения измерения готовят раствор субстрата и фермента (в качестве субстрата используют 1-диметиламиноиафта-линсульфонил-пептид в качестве фермента — пепсин) в 0,1 М формиатном буферном растворе (pH 3,1). Концентрации субстрата (моль/л) 0,02-10-3 0,06-10- 0,Ы0- 0,15-10- 0 2-10-з. Концентрация фермента постоянна 7,14-10 моль/л. Измеряют флуоресценцию образовавшегося фермент-субстратного комплекса (А-воаб = 285 нм, >ифл = 500 нм) в каждом из растворов и строят график зависимости aji от l/[So]. По тангенсу угла наклона определяют константу диссоциации комплекса /(,. [c.86]

    Полученные результаты титрования представляют в форме трех кривых (рис. 12). Применение титриметрического метода с введением сильной кислоты в качестве фона вместо нейтрального электролита обладает тем преимуществом, что при этом строго стандартизированы условия проведения эксперимента во всех его сериях. Применяют различные приемы расчета экспериментальных результатов рН-метрических измерений. Исходными моментами этих расчетов является знание начальных концентраций каждого из исследуемых компонентов системы, нахождение констант кислотности или основности лиганда и составление уравнений, описывающих условия материального баланса и электронейтральности. При этом получают систему из т уравнений с П неизвестным, где т > П. Для рещения систем таких уравнений предложены разнообразные алгебраические и графические преобразования, позволяющие рассчитать, основываясь на ряде допущений, соответствующие константы устойчивости комплексов аналогично тому, как это показано на примере расчетов константы диссоциации кислот, по Шварцер-баху. В других случаях используют прием введения вспомогательных функций, легко рассчитываемых из экспериментальных данных и связанных простыми зависимостями искомыми константами. [c.111]

    Принимая ЕО внимание уравнения (4) и (6), можно вывести нз выражения константы диссоциации кислоты следуюшую зависимост ,  [c.293]

    В целом функциональный характер рН-зависимых кинетических пара метров уравнения Михаэлиса обнаруживает глубокое сходство с закономерностями рассмотренного обратимого влияния э( к )екторов (см. 2 этой главы). Так, например, если при связывании субстрата ( )ерментом константы диссоциации ионогенных групп не претерпевают изменений (т. е. Ка = К в., Кв = К или, что то же самое, ионогенный процесс не оказывает влияния на сорбцию субстрата и, следовательно, К = К/ = К ), то величина наблюдаемой константы Михаэлиса ферментативной реакции не зависит от pH (/Ст(каж) = KsУ  [c.260]

    Эти свойства можно характеризовать первой константой диссоциации слабой кислоты, так как реакции (12) и (12а) связаны с равновесием между НгА и ионами НА и Н" . Таким образом, кислая соль имеет два противоречивых свойства она может выделять водородные ионы и может их поглощать. В зависимости от того, какая из двух реакций (11) или (12) идет в большей степени, кислая соль может н.меть кислую реакцию (например, МаНЗО,) или щелочную реакцию (например, ЫаНСО,). [c.299]

    Анализ зависимости от pH позволяет найти значения констант диссоциации ионогенных групп фермент-субстратного комплекса К и К в), в то время как анализ рН-зависимости эффективной константы скорости второго порядка ат//Ст каж) приводит К значениям констзнт диссоциации ионогенных групп свободного фермента Ка. и КвУ- [c.260]


Смотреть страницы где упоминается термин Константа диссоциации зависимость: [c.266]    [c.508]    [c.502]    [c.74]    [c.198]    [c.256]    [c.661]   
Аналитическая химия (1965) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Константа диссоциации

Константа зависимость



© 2025 chem21.info Реклама на сайте