Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свинец обнаружение

    Свинец, обнаружение 255, 269 капельным методом 256. 394 Седиментация 139 Селективные реакции 21 Серебро, обнаружение 254, 269 капельным методом 393 Сероводород 130, 211, 249, 262, 270, 277, 308, 309 Силикат-ион, обнаружение 331, 352 Систематический анализ 22 Смешанные кристаллы 142 Солевой эффект 90 Соосаждение 141, 142 Специфичность реактива 180 реакции 21. 178 Сплавы 375 сл. [c.419]


    Например, в систем е висмут— свинец обнаружен отрицательный ближний порядок в жидком состоянии. При наличии дальнего порядка ближний порядок осуществляется обязательно. [c.130]

    Все осадки после переосаждения, прокаливания и взвешивания были подвергнуты спектральному исследованию, но ни в одном случае свинец обнаружен не был. [c.62]

    Во взвешенных веществах бассейна р. Волги свинец обнаружен в большинстве проб. По всей длине реки наблюдается равномерное распределение свинца в речных взвесях по сезонам года. [c.69]

    Одним из первых приборов для обнаружения радиоактивности был счетчик Гейгера, который вырабатывал электрический сигнал, когда частица, испущенная радиоактивным источником, взаимодействовала с ним. В этой лабораторной работе вы познакомитесь с использованием современных счетчиков для сравнения альфа-, бета- и гамма-лучей с точки зрения их способности проникать через стекло, свинец и картон. [c.318]

    Ключевые слова инверсионная вольтамперометрия,свинец,бензин, стеклоуглеродный электрод,фоновый раствор,накопление,растворение. предел обнаружения. [c.114]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    Возраст наиболее древних минералов, обнаруженных на Земле, составляет приблизительно 3 10 лет. Этот возраст указывает, что кора Земли образовалась не позже указанного времени. До кристаллизации коры изотопы свинец-206 и уран-238 могли разделяться. Согласно имеющимся оценкам, потребовалось (1 — 1,5) 10 лет, чтобы Земля остыла и ее поверхность отвердела. Это показывает, что возраст Земли можно оценить в (4 — 4,5) 10 лет. [c.256]


    Приведем пример дробного обнаружения катионов кальция. Лучше всего его обнаружить в виде оксалата. В этом случае алюминий, хром, марганец, железо и другие катионы маскируются в виде комплексных оксалатов, легко растворимых в воде. Некоторые катионы тяжелых металлов — серебро, сурьма, ртуть, свинец, висмут не дают растворимых оксалатных комплексов, но осаждаются металлическим цинком. В раствор переходит ион цинка, не мешающий реакции на кальций и образующий комплексный оксалат. Стронции и барий не мешают реакции, так как осаждаются в виде сульфатов растворимость сульфата кальция 2,5 г/л, что позволяет уверенно обнаружить кальций в фильтрате в виде оксалата кальция после осаждения мешающих катионов. [c.133]

    Свинец является протоплазматическим ядом, вызывающим изменения главным образом в нервной ткани, крови и сосудах. Ядовитость соединений свинца в значительной степени связана с растворимостью их и в желудочном соке, и в других жидкостях организма. Хроническое отравление свинцом дает характерную клиническую картину. Смертельная доза различных соединений свинца неодинакова. Дети особенно чувствительны к нему. Свинец не относится к числу биологических элементов, но обычно присутствует в воде и пище, откуда поступает в организм. Человек, не занятый работой со свинцом, поглощает в сутки, как указывает И. В. Лазарев, 0,05—2 г свинца (в среднем 0,3 мг). Соединения свинца способны кумулироваться в костной ткани, печени, почках. Около 10% его всасывается организмом, остальное количество выделяется с калом. Свинец откладывается в печени и в трубчатых, несколько меньше — в плоских костях. В остальных органах откладывается в незначительном количестве. Отсюда возможность обнаружения свинца во внутренних органах трупов людей, умерших от других причин, и необходимость количественного определения его при положительных результатах качественного анализа. [c.305]

    А вот с группы IVa начинается беспорядок. Все элементы, обнаруженные в древности,— углерод, олово, свинец,— влезли в таблицу без очереди. [c.6]

    Аналитики должны уметь быстро, надежно, с низким пределом обнаружения определять в городском воздухе окись углерода, двуокись серы, окислы азота, свинец, ртуть. Но это только самые ходовые примеси. В отдельных местах нужно систематически определять и другие вещества, например фториды около заводов по производству алюминия. Нормируются очень многие вредные компоненты, на них установлены предельно допустимые концентрации (ПДК). Предел обнаружения аналитических методов должен быть ниже ПДК или, по крайней мере, на уровне ПДК. [c.115]

    Для обработки свинца при встречающихся на практике концентрациях достаточно 10 мг иода на 50 мл раствора. Но в реальных бензинах часто содержится значительное количество непредельных углеводородов, с которыми иод также взаимодействует. Поэтому принято добавлять 50 мг иода к 50 мл смеси бензина с тетрагидрофураном (1 Э). Натрий, калий, медь, никель, ванадий, марганец, железо, хром и цинк при концентрации в 100 раз большей, чем свинец (40 нг/мл), не оказывают влияния на результаты анализа. При концентрации кадмия, в 100 раз превышающей концентрацию свинца, абсорбция свинца увеличивается вдвое. Предел обнаружения свинца составляет 10 нг/г, воспроизводимость 3,1% при концентрации свинца 100 нг/г. [c.180]

    По второму методу кокс анализируют непосредственно. После измельчения в агатовой ступке 30 мг кокса помещают в кратер электрода и наносят каплю 3%-ного раствора полистирола в бензоле для предотвращения выброса во время горения дуги. Анализ проводят по методу добавок. В образцы кокса вводят нитраты или оксиды определяемых элементов. Применяют электроды с кратером глубиной 5 м)м и диаметром 3 мм, спектрограф ИСП-28, дуга переменного тока силой 12—14 А, аналитический промежуток 2 мм, экспозиция 45 с, ширина щели 15 мкм. Достигнуты следующие значения предела обнаружения (в мкг/г) медь и марганец — 0,01 ванадий, никель, свинец и титан — 0,1. Результаты анализов совпадают с данными, полученными методом кислотного озоления. С увеличением количества азотной кислоты снижается степень выделения свинца, марганца, меди и титана в асфальто-смолистую часть. По-видимому, разрушаются соединения этих элементов и частично переходят в жидкую фазу. При меньшем количестве кислоты также ухудшается выделение металлов, по-видимому, из-за недостатка кислоты для образования осадка асфальто-смолистых веществ. [c.187]

    При электротермической атомизации пробы проблема проскока частиц сквозь просвечиваемую зону отпадает. В работах [114, 115] для анализа работавших авиационных моторных масел использован графитовый стержневой атомизатор в сочетании с водородно-аргоново-воздушным пламенем. Под атомизатором на расстоянии 25 мм находится горелка, расход водорода 1,2 л/мин, аргона —7,2 л/мин, воздух — окружающий. Атомизатор в основном нагревается электрическим током по заданной программе. Эталоны представляют собой растворы неорганических солей. Для анализа микрошприцем вводят в углубление атомизатора 0,5—1,0 мкл эталона или образца масла и по заданной программе проводят сушку, озоление и атомизацию. Водные эталоны сушат при 75 °С, а пробы масел — при 150—250°С, температура озоления 345—440°С, температура атомизации 1580—1990 °С в зависимости от определяемого элемента, высота наблюдения 2,0—4,0 мм. Достигнуты следующие пределы обнаружения (в нг/мл) серебро — 4—5, хром — 5, медь—15—25, железо — 8, магний — 2, никель — 60, свинец-25. [c.208]


    Для анализа использован атомно-абсорбционный СФМ Перкин-Элмер , модель 303. Условия определения каждого элемента взяты из рекомендаций фирмы-изготовителя прибора. В расчете на анализ 2%-ного раствора достигнуты следующие пределы обнаружения (в мкг/г) литий, натрий — 0,1, калий — 0,3, магний, цинк, кадмий — 0,5, кальций—1,0, серебро—1,5, медь — 2,5, сурьма — 3, железо, никель — 5, свинец—10, алюминий, кремний, олово—50, титан—70, ртуть—100, бор—1000. [c.218]

    Для повышения чувствительности амальгамно-полярографического анализа нефти и бензиновых фракций на медь и свинец использован эффект амальгамы аммония [126]. Предел обнаружения составил 5-10 %, Для этого метода также исследовалось влияние температуры анализируемого раствора [127]. Увеличение температуры от 22 до 50Х позволило понизить предел обнаружения в среднем в 7—8 раз. Результаты описанных исследований использованы для определения указанных элементов в нефтях Западной Сибири и их бензиновых фракциях. [c.46]

    Охладить раствор. Часть раствора перенести пипеткой в чистую пробирку. В виде каких ионов могут быть в растворе олово и свинец Установить присутствие ионов двухвалентного олова по их восстановительным свойствам. Может ли свинец помешать обнаружению этими реакциями присутствия олова Ответ мотивировать. [c.200]

    Fairhall проба Фэрхолла на свинец — обнаружение свинца по образованию чёрных кристаллов смешанного гексанитрита калия, меди и свинца, идентифицируемых под микроскопом [c.497]

    Анализ фильтрата 3. Фильтрат 3 нагревают до полого удаления сероводорода [проба на бумагу, смоченную рас-вором. СНзСОО)2РЬ] и затем небольшую порцию его испыты-ают при помощи 2 н. раствора H2SO4 на присутствие свинца, сли свинец обнаружен, к фильтрату 3 прибавляют 3—4 мл серой кислоты, разбавленной в отношении 1 1, и упаривают чашке до выделения густых паров НгЗО . Свинец выделяется [c.425]

    Удаление РЬСЬ из осадка хлоридов. Если свинец обнаружен, к осадку прибавляется дистиллированная вода и производится нагревание на водяной бане. Отцентрифугировав еще горячий раствор, проверяют в центрифугате наличие ионов РЬ + и отбрасывают его. Обработку осадка горячей водой продолжают до тех пор, пока в центрифугате не будет отрицательной реакции на РЬ + с хроматом калия. [c.189]

    Для разделения и обнаружения катионов в присутствии гексацианоферратов анализируемую смесь вы,паривают досуха в маленькой свинцовой чашке с 18 М H2SO4 при добавлении кргисталлика (/NH4)2S20a. Следует учесть, что при зтом вводится свинец, который затем можно обнаружить. [c.66]

    Суншость работы. Определение основано на экстракции хлороформом комплексного соединения кадмия с диэтилдитиокарба-минатом натрия и последующем вьщелении кадмия из тонкого слоя силикагеля. Элюентом служит смесь н-гексан-хлоро-форм-диэтиламин. Определению не мешают свинец, олово. Предел обнаружения - 0,01 мкг/л. Количественное определение проводят по градуировочному графику. [c.304]

    Исходя из свойств некоторых органических соединений, применяемых в анализе, перспективными для качественного обнаружения ионов металлов метод адсорбционно-комплексообразовательной хроматографии являются (в скобках указаны определяемые элементы) ализарин С (алюминий, циоконий, торий) алюминон (алюминий, бериллий) арсеназо III (цирконий, гафний, торий, уран, редкоземельные элементы) диметилглиоксим [никель, кобальт, железо (II), палладий (И)] 2,2 -дипиридил [железо (И)] дитизон (серебро, висмут, ртуть, свинец, цинк) дифенил-карбазид [хром (VI)] 2-нитрозо-1-нафтол (кобальт) нитро-зо-Н-соль (кобальт) рубеановая кислота [железо (III), [c.248]

    Специфичность реакции можно повысить путем маскировки сопутствующих ионов. Маскировка заключается в связывании мешающих ионов в достаточно прочные комплексы добавлением в раствор соответствующих веществ. Например, медь и свинец можно маскировать, переведя их в тартраты в таком растворе можно обнаружить те ионы, которые не образуют тартратные комплексы. Маскировка мешающих ионов часто используется и имеет большое практическое значение. Например, если в ходе анализа катионов 4-й группы к раствору, содержащему медь, кадмий, висмут, свинец, прибавить глицерин, с которым все катионы, кроме кадмия, образуют прочные комплексы, не осаждаемые щелочами, а затем подействовать гидроокисью натрия, то кадмий оседает в виде гидроокиси, а остальные катионы останутся в растЕоре и могут быть затем обнаружены. Ион Ре " мешает обнаружению Со + в виде синего роданидного комплекса, так как образует темно-красный комплекс ( 81, 82), что мешает определению кобальта. Если же железо предварительно перевести во фторидный комплекс 1РеРйР или [РеРа]-, добавляя фторид натрия, то оно не помешает определению кобальта, так как комплекс железа с фторид-ионами значительно устойчивее, чем железороданидный комплекс. Кадмий можно осадить в виде желтого сульфида в присутствии меди (И), связывая медь в цианидный комплекс [Си (СЫ) , более прочный, чем цианид-ный комплекс кадмия. /Снест для комплекса кадмия 1,4-10" , а для комплекса меди (I) 5-10 , т. е. значительно меньше. [c.100]

    Сверхпроводимость НК и пленок. Первые работы с пленками олова, таллия и свинца, проведенные с целью обнаружения аномальных свойств сверхпроводников малых размеров, предприняты сравнительно давно (Шальников А. И., 1940 г). Установлено, например, что свежеосаждепные пленки действительно имеют аномально высокие и Исключение составляют лишь свинец, которого не меняется даже при конденсации на подложку с температурой 4 К, и ртуть. Тс которой (табл. 10) немного понижается при такой низкотемпературной конденсации. [c.494]

    Примечание. Выпаривание с кон . H2SO4 необходимо проводить н в том случае, если свинец не был обнаружен в осадке хлоридов I группы, так как при малой концентрации ионов не образуется осадка РЬСЬ- Кроме [c.76]

    Методы хроматографии на бу.маге используются в ряде случаев для качественного обнаружения кобальта в присутствии посторонних элементов описано также. много. методик полуко-личественного или количественного определения. Описаны методики разделения с.месей, содержащих кобальт, никель, медь, железо, цинк, марганец, кадмий, свинец, уран и др. [c.62]

    Ключевые слова атомно-абсорбционная спектроскопия.мышьяк.свинец. 13)афитовый атомизатор, цредел обнаружении. [c.209]

    Судебно-химическим отделением Государственного научно-исследовательского института судебной медицины отмечен случай, когда при. ускоренном разрушении муки в одной из лабораторий в исследованных образцах не был обнаружен мышьяк, найденный двумя другими лабораториями. То же было отмечено (при переэкспертизе) по отношению к свинцу, перешедшему из полуды в пищу. При ускоренном разрушении в одной из судебно-химических лабораторий не был иайден свинец. [c.104]

    Еще один микрометод, основанный на анализе сухого остатка, заключается в следующем. На токарном станке из спектральных углей вырезают диски диаметром 4 мм и толщиной 0,5 мм, которые дополнительно очищают обжигом в дуге постоянного тока силой 12 А в течение 15 с. Затем на диск наносят микропипеткой 20 мкл анализируемого раствора, сушат под ИК-лампой при 80 °С и помещают в кратер нижнего электрода, который служит анодом дуги постоянного тока. Достигнуты следующие абсолютные пределы обнаружения (в нг) qpeб-ро — 0,08 висмут — 0,4 магний, марганец, медь — 0,5 алюминий, кремний, молибден, титан — 2 ванадий, кобальт, хром, цинк — 3 железо — 4 никель, олово — 5 кальций — 6 свинец— 7 кадмий, сурьма — 10 мышьяк — 90. При увеличении толщины дисков свыше 1,5 мм резко ухудшаются чувствительность и точность анализов [52]. [c.27]

    По мере увеличения расхода (скорости всасывания) анализируемого раствора абсорбционный оигнал усиливается, но после максимума снижается. Положение максимума зависит от конструкции и состояния распылительной системы, свойств анализируемого вещества, применяемого раство рителя и др. Но во всех случаях с увеличением объема порций распыляемого образца максимум смещается в область больших расходов. Так, при определении в водных растворах И элементов методом импульсного распыления дозами 20, 50 и 100 мкл максимальный абсорбционный сигнал наблюдается нри расходах примерно 2,5 3,8 и 6,0 мл/мин. При распылении водных растворов порциями по 40 мкл достигнуты следующие абсолютные пределы обнаружения (в нг) цинк и кадмий—1 серебро — 2 медь — 3 кобальт — 4 железо и никель — 8 свинец и теллур— 12 в1исмут и индий — 24. Абсолютный предел обнаружения ниже, чем в методе непрерыиного распыления, примерно в [c.55]

    Следует остановиться еще на одном гибридном атомизаторе системе проволочное кольцо — пламя. Кольцо диаметром 4 мм из платиновой проволоки диаметром 0,5 мм установлено в керамическом держателе с электрическими контактами. К кольцу подводят электроэнергию с напряжением до 2,5 В, силой тока до 20 А. На кольцо наносят 1—40 мкл анализируемого раствора и сушат электронагревателем. Для сушки 40 мкл водного раствора требуется 2 мин. При ускорении сушки возможны потери определяемых элементов. После сушки кольцо быстро вводят в пламя и включают электронагрев на полную мощность. За время меньше 1 с температура кольца повышается до 1250°С, и происходит атомизация пробы в пламени. Записывают пик абсорбционного сигнала. Для получения ацетилено-воздушного пламени используют горелку со щелью длиной 8 мм и шириной 0,5 мм. Для введения кольца в пламя сконструировано электромагнитное устройство, которое одновременно включает электропитание кольца для атомизации, С одним платиновым кольцом можно сделать свыше 1000 определений. При испарении 40 мкл раствора достигнуты следующие пределы обнаружения (в мкг/мл) кадмий — 0,25, мышьяк—1,5, свинец — 4, сурьма—10 при испарении 10 мкл цинк—1, висмут — 20, теллур — 30, селен — 60, ртуть — 100. Щелочные и щелочноземельные металлы определяют по эмиссионным спектрам. Предел обнаружения (в нг/мл) при испарении 10 мкл раствора составляет литий — 0,06, натрий и стронций—10, цезий — 80, барий — 90, калий — 1000 [98]. [c.58]

    В работе [169] описаны два метода определения свинца в нефти и нефтепродуктах с непламенной атомизацией пробы. Использован СФМ Вариан Тектрон АА-5 и ЭТА, модель 61. Пробы с простой матрицей анализируют непосредственно после разбавления ксилолом. Пробы со сложной матрицей или с очень высокой вязкостью или содержащие слишком мало свинца подвергают экстракции и анализируют экстракт. Эталоны для прямого анализа готовят из ТЭС или циклогексанбутирата свинца разбавлением до нужных концентраций ксилолом, а для анализа экстракта — из нитрата свинца. Экстракцию свинца проводят следующим образом. Пробу (4—10 г) разбавляют ксилолом, добавляют дитизон, 25—50 мл 40%-ной азотной кислоты и свинец выделяют с водной фазой. В атомизатор вводят 2 мкл раствора, анализ проводят в среде аргона (1 л/мин). Однако для защиты графитовой трубки от окисления рекомендуется использование диффузионного водородного пламени. Установлено, что ни форма соединения свинца, ни тип растворителя не оказывают влияния на чувствительность анализа. При использовании линии РЬ 217,0 нм сигнал получается сильнее, но и шум значительно интенсивнее, чем на линии РЬ 283,3 нм. Поэтому отношение сигнал шум для линии РЬ 283,3 нм выше. Абсолютный предел обнаружения составляет 2 пг свинца. [c.178]

    Для построения градуировочных графиков использованы водные растворы диоксида селена ц толуольные растворы ди-лаурилселенида. При введении 10 мкг мышьяка в раствор, содержащий 0,5 мкг селена, абсорбционный сигнал увеличивается на 5—10%. На результаты анализа практически не влияют железо, ванадий, никель, алюминий, медь, натрий, кальций, кобальт, хром, свинец, магний, марганец, калий. Предел обнаружения селена составляет 10 нг/г. [c.239]

    Изотопы были открыты в процессе изучения радиоактивных элементов. Предполагалось, что они химически идентичны и отличаются лишь по массе и радиоактивным свойствам. Уже давно было отмечено, что относительная распространенность изотопов элемента, образующегося в результате радиоактивного распада, может отличаться от распространенности изотопов этого же элемента, обнаруженного в нерадиоактивном минерале. Ричардс и Лемберт [1694] первые показали, что атомный вес свинца в природе колеблется обычный свинец обладал атомным весом 207,15, в то время как образцы свинца из различных радиоактивных минералов обладали атомным весом 206,40. Аналогичные колебания были отмечены и для других элементов, связанных с радиоактивными минералами. Как это будет показано ниже, измерение относительной распространенности изотопа при детальном знании процессов распада, приводящих к его образованию, может быть использовано при определении возраста минерала. Однако вариации в распространенностях изотопов наблюдаются и для процессов, связанных лишь со стабильными изотопами, что свидетельствует о некотором различии в физических и химических свойствах изотопов одного и того же элемента. [c.100]


Смотреть страницы где упоминается термин Свинец обнаружение: [c.511]    [c.290]    [c.299]    [c.296]    [c.286]    [c.290]    [c.1582]    [c.335]    [c.55]    [c.78]    [c.179]    [c.261]   
Курс качественного химического полумикроанализа 1973 (1973) -- [ c.454 , c.561 ]

Основы аналитической химии Книга 1 (1961) -- [ c.368 , c.376 , c.378 , c.393 ]

Химия травляющих веществ Том 2 (1973) -- [ c.125 , c.146 , c.211 ]

Курс аналитической химии Издание 5 (1981) -- [ c.66 , c.260 , c.267 , c.271 , c.275 ]

Аналитическая химия (1980) -- [ c.188 ]

Основы аналитической химии Издание 2 (1965) -- [ c.279 , c.336 , c.349 , c.353 , c.468 ]




ПОИСК







© 2025 chem21.info Реклама на сайте