Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан потенциометрическое

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]


    Титан (III) можно определять также потенциометрическим [32] или амперометрическим (с платиновым вращаюш имся электродом [c.140]

    Последовательное определение других металлов. Потенциометрическим титрованием растворами солей хрома (И) можно раздельно определять ртуть (П) и висмут (П1) [481 ртуть (II) и железо (III) 48] селен (1У) и теллур (IV) [107] ванадий (У) и титан (1У) [12] вольфрам (У1) и хром (У1) [41]. [c.179]

    В потенциометрических, визуальных, а также амперометрических методах определения иридия используются реакции восстановления иридия (IV) до иридия (III). Восстановителями могут служить иодистый калий [124,125], гидрохинон [126—128], ферроцианид калия [129], соль Мора 130], хлористый титан (58, 131], аскорбиновая кислота [132] и некоторые другие реагенты [93, 94, 103, 133, 134]. [c.145]

    Изучение формальных потенциалов системы Tl(III) — T1(I) и потенциометрическое определение Tl(III) восстановлением титаном (III) и ванадием(П). [c.169]

    Восстановление боргидридом натрия используется при определении олова. Медь, серебро, золото могут быть количественно выделены из растворов их солей при действии боргидрида натрия в виде металла [632]. Этот способ может быть использован для определения железа в рудах, содержащих титан. Применяя потенциометрическое титрование, можно определить совместно железо и титан. [c.478]

    При потенциометрических титрованиях растворами солей двухвалентного хрома скачок потенциала в конечной точке обычно настолько велик, что достаточно простое оборудование. Могут быть использованы различные типы потенциометров, а также автотитраторы, многие из которых весьма удобны для выполнения титрования в атмосфере инертного газа. Так, Лингейн [161 успешно определял трехвалентное железо и четырехвалентный титан в одном и том же растворе с применением автотитратора. [c.5]

    Титруемый раствор не должен содержать даже следов кислорода. Выполнение этого требования связано с рядом трудностей, ограничивающих возможности использования метода. Такой цветной индикатор, который являлся бы достаточно чувствительным для определения конечной точки при титровании столь разбавленных растворов, в настоящее время не известен. Поэтому при титровании железа титаном конечную точку определяют с помощью дифференциального потенциометрического метода. Специальная аппаратура требуется не только для установления конечной точки титрования, но также для добавления реактива, так как его следует тщательно оберегать от окисления кислородом воздуха. [c.184]


    Предложена методика кулопометрического титрования Re(VlI) электролитически генерированным Ti(IH) с потенциометрической индикацией конечной точки [1161]. При этом Re(VH) восстанавливается трехвалентным титаном до Re(lV). Генерацию Ti(III) ведут в фоне раствора 60 мл 0,6 М T10S04 в 8 М H2SO4 -Ь 15 мл 1,5 7V Н3РО4 ири 85° С на Pt-электроде. Вначале генерируют 85% необходимого для титрования Т1(1П), вносят аликвотную часть [c.150]

    Титан (III). Потенциометрическое титрование [21] Ti проводят в атмосфере неактивного газа в среде 1—3 М раствора H I или 3 М раствора H2SO4. [c.102]

    Молибден (VI). Восстановление Мо растворами rSO и r lg изучалось рядом исследователей [26, 56—60]. Реакция между Сг и Мо 1 протекает количественно в солянокислых или сернокислых растворах при 80—100° С Mo i сначала восстанавливается до Мо" , а затем — до Mo i при потенциометрическом титровании соответственно наблюдаются два скачка потенциала [60]. Определению не мешают железо (III) [41, 62, 63], медь (II), титан (IV), ванадий (V), вольфрам (VI) [41]. [c.174]

    Титан (IV). Титан (IV) солями хрома (II) количественно восстанавливается [83] до Ti в солянокислом растворе, содержащем a lj или Na I. Титрование (потенциометрическое) проводят при 90 С. Стандартный раствор соли Сг необходимо добавлять медленно для того, чтобы можно было заметить сравнительно небольшой скачок потенциала. Лингейн [52] считает этот метод непригодным. Он рекомендовал титровать Ti в среде 4 н. раствора H2SO4 с применением ртутного индикаторного электрода в таких условиях реакция восстановления Ti протекает при комнатной температуре и в конечной точке наблюдается отчетливый скачок потенциала. [c.176]

    В одном из них титан (IV) титруют потенциометрически [30] в среде серной кислоты при 80° С. у Если титрование проводят в присутствии железа (III) [30], наблюдаются три скачка потенциала  [c.223]

    Хавннга [78], погрешность в случае проведенных определений составляет менее 10% (отн.). Продолжительность определения 1,5—2,0 ч. Соломон с сотрудниками указывают [52], что из всех применяемых ими методов анализа для определения активности алюминийалкилов метод восстановления четыреххлористым титаном — наиболее подходящий. Он дает воспроизводимые результаты в узких пределах, проводится быстро и не требует сложной аппаратуры. Авторы при-водят для сравнения результаты определений активности триэтилалюминия по четыреххлористому титану, с помощью потенциометрического титрования изохинолином и определения концентрации алюминийалкилов по общему алюминию. Оба метода определения активности дают сравнимые результаты, но существует большая разница между определением активности растворов триэтилалюминия и концентрации триэтилалюминия, рассчитанной по общему алюминию. [c.140]

    Потенциометрическое титрование рутения NaxiRuOH ls] хлористым титаном [144]. Метод основан на восстановлении [RuOH ls] в солянокислом растворе (1,0—0,8 N НС1)  [c.148]

    Рейхерт, Мак-Нейт и Радел [2] сравнили данные потенциометрического титрования перекиси зодорода такими реагентами, как перманганат, соль Мора, тиосульфат, арсенит, двухлористое олово, треххлористый титан, сульфит и нитрит. Они считают, что наилучшие результаты при oKpauieinibix растворах, содержащих органические вещества, дает 1штрит, и описывают подробную методику применения последнего. [c.465]

    Электрогенерированный титан (III) на Pt-электроде из раствора 0,6 М по T10S04, 0,8 М по H2SO4 и 1,5 М по Н3РО4 предложен для титрования рения (VII). В процессе химической реакции последний восстанавливается до Re . В электролизере ведут генерацию титранта при 85 °С до 85 % от необходимого эквивалентного количества. Затем вводят анализируемую пробу с рением(VII) и через 4 мин продолжают генерацию до достижения к. т. т., которую регистрируют потенциометрическим методом [603]. [c.76]

    Большая часть титриметрических методов определения золота основана на осаждении его в виде металла или соли золота (I). Во всех методах, кроме иодометрического, конечную точку титрования определяют потенциометрически или обратным титрованием избытка реагента. Как следует из величины окислительно-восстановительных потенциалов солей золота, для восстановления их пригодны многие реагенты. Наиболее употребительны гидрохинон, железо(П), арсенит натрия и аскорбиновая кислота. Такие восстановители, как титан(1П), олово(П), хром(II), медь(1), соли гидразиния, двуокись серы и т. п., применяются в некоторых специальных случаях, но не рекомендуются для общего употребления. [c.117]

    Предлагают также проводить расщепление кремнетитанаорганических соединений фтористоводородной кислотой с последующим воздействием бензидина или других аминов, образующих комплексные соли с НаИРе [42]. Измеряя электропроводность растворов и соотношение концентраций окисленной и восстановленной форм амина кондуктометрически или потенциометрически, удается быстро и количественно определять титан. [c.397]

    Клингер, Штенгель и Кох [105] определяли титан в сталях, ферротитане, шлаках и рудах путем его восстановления при помощи металлического цинка в среде соляной кислоты, а затем довосстанавливая при помощи раствора хлорида двухвалентного хрома, и последующего потенциометрического титрования трехвалектного титана раствором бихромата калия. Первый скачок потенциала соответствует окончанию окисления избытка соли двухвалентного хрома, а второй — окончанию окисления трехвалентного титана. [c.50]


    Степиным, описан в книге Сырокомского [7]. Степин Музовская [18] предложили ванадатометрический метод определения Реобщ с применением индикатора фенилантраниловой кислоты. Рябчиков и Сильниченко [19] для определения Реобщ в рудах, металлах и сплавах применили потенциометрический метод, заключающийся в восстановлении Ре + одновалентной медью в сернокислой среде и титровании раствором марганцевокислого калия сначала Си+, затем Ре2+. Персиваль [20] и Зильверман [21] применили потенциометрический метод для определения Реобщ в сплавах на титан-алюминиевой основе. [c.14]

    Содержание марганца определяли объемным серебря-но-персульфатным или потенциометрическим методом алюминия, кальция и магния при содержании <1% — спектральным методом из раствора анализируемого материала, при содержании >1%—трилонометрическим методом хрома — амперометрическим или объемным се-ребряно-персульфатным методом титана — фотоколориметрическим методом с применением диантипирилмета-па ванадия — амперометрическим методом фосфора — фотоколориметрическим методом, основанным на образовании желтой фосфорномолибденовой гетерополикислоты, которую восстанавливают в соляокислой среде ионами Ре + в присутствии солянокислого гидроксилами-на до окрашенного в синий цвет фосфорно-молибденового комплексного соединения никеля — полярографическим методом меди — фотоколориметрическим методом по окраске медно-аммиачного комплексного соединения вольфрама —фотоколориметрическим методом по окраске вольфрам-роданидного комплексного соединения, восстановленного треххлористым титаном молибдена — фотоколориметрическим методом по окраске молибдено-роданидного комплексного соединения, восстановленного [c.41]

    Титрование Т1 находит практическое применение при анализе различных веществ, однако обычно требуется предварительное его выделение с помощью экстракции или ионного обмена. При определении Т1 и Ре в шлаке, ферротитане, ильмените предварительно проводят экстракцию купферроном [61(82)]. Сплавы магнитных металлов подвергают ионообменному разделению [59(9)]. Определение титана с помощью фотометрического титрования находит применение в анализе сырья, полупродуктов и готовой продукции в известковой и цементной промышленности [60(136), 61(42)] кроме того, титан определяют в твердых металлах [61 (168)], сплавах [63(62), 63(63)] и без предварительного отделения потенциометрически [60(135)] или фотометрически [62(80)] в присутствии А1 — в алюминиево-тйтановых катализаторах, [c.201]

    Потенциометрическое титрование с дифференциальным электродом. Метод дифференциального потенциометрического титрования, подробно описанный выше в разделе, посвященном ацидиметрии, был практически использован при работе с хингидронной окисли-тельно-восстановительной системой. Титрование других окислительно-восстановительных систем также может быть осуществлено с помощью этого метода. Вместо того чтобы для установления оки-слительно-восстановительной системы добавлять хингидрон, можно измерять собственные окислительно-восстановительные потенциалы реагирующих веществ и по этим потенциалам определять конечную точку титрования. Известно несколько работ, посвященных применению потенциометрических оксидиметрических методов для титрования очень малых количеств вещества. Дубноф и Кирк [4] пользовались дифференциальным потенциометрическим методом определения конечной точки при титровании ионов трехвалентного железа ионами трехвалентного титана. Вследствие необходимости полного исключения кислорода при работе с растворами, содержащими трехвалентный титан, установка для такого титрования значительно сложнее описанной выше установки для работы с хингидронными электродами. Метод Дубнофа и Кирка подробно изложен при описании редуктометрического определения железа. [c.154]

    Чтобы точно определить целесообразность и возможности применения редокс-полимера, необходимо знать их редокс-емкости, )едокс-потенциалы и относительные скорости реакции. Кассиди 19], Манеке [100—102] и Сансони [136—138] в 1949—1958 гг. независимо друг от друга испытали целый ряд окислителей и восстановителей на сшитых и растворимых редокс-полимерах и пришли к одним и тем же выводам. Хорошими окислителями являются бром, иод, церий (IV), железо (III) и перекись водорода. Восстановление может быть проведено титаном (III), сульфитом натрия, бисульфитом натрия, иодидом калия в кислой среде и гидросульфитом натрия. Ранее для восстановления смолы использовались гидриды металлов. В соответствующих условиях реакций окислители оказываются полезными при потенциометрическом титровании восстановленных растворимых редокс-полимеров. Этот метод дает как емкость, так и редокс-потенциал растворимых редокс-полимеров. Редокс-емкости сшитых редокс-смол определяют обработкой смол избытком окислителя, но это может привести к неприятным последствиям, вследствие побочных реакций. Бром, как и следовало ожидать, окисляет гидрохинонную группу. Затем избыток [c.157]


Смотреть страницы где упоминается термин Титан потенциометрическое: [c.581]    [c.148]    [c.366]    [c.581]    [c.354]    [c.262]    [c.19]    [c.210]    [c.434]   
Физико-химичемкие методы анализа (1964) -- [ c.440 ]

Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Физико-химические методы анализа (1964) -- [ c.440 ]




ПОИСК





Смотрите так же термины и статьи:

потенциометрическое



© 2024 chem21.info Реклама на сайте