Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иридий восстановление

    Осадок растворяют в НС и осаждают палладий каломелью. Из полученного фильтрата удаляют неблагородные металлы нитрованием , затем отделяют родий от иридия восстановлением гипофосфитом натрия (см. гл. V, стр. 227). [c.270]

    На основании данных температурно-программированного восстановления (ТПВ), ИКС- и РФС-спектроскопии Г.Н.Маслянский предположил, что в случае Pt-Re и Pt-Ir катализаторов платина способствует восстановлению элементов VHI ряда (рения и иридия) до металлов с образованием биметаллических сплавов - кластеров, содержащих небольшое число смежных атомов платины, которые разделены рением или иридием Pt-Re-Re-Pt-Pt-Re-Pt. Для уменьшения доли реакций коксообразования мелкие Pt-Re и Pt-Ir кластеры подвергают предварительному дозированному осернению. Несмотря на это, полученные катализаторы становятся более чувствительными к отравлению серой. Если при работе на АПК сырье может содержать серу в количестве 5-10 млн 1, то сырье для Pt-Re или Pt-Ir катализаторов не должно содержать более 1 млн-1. Сравнение свойств полиметаллических катализаторов серии КР с монометаллическими АП-64 при близкой [c.153]


    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    У галидов кобальта, родия и иридия особых реакций окисления — восстановления нет. [c.373]

    Чем сильнее разбавлена азотная кислота, тем сильнее идет процесс ее восстановления. Металлы, расположенные в ряду активностей (напряжений) за водородом, восстанавливают концентрированную азотную кислоту до оксида азота (IV), а разбавленную — до оксида азота (II). Более активные металлы (2п, М , Са и др.) восстанавливают азотную кислоту до оксида азота (I) сильно разбавленная кислота восстанавливается ими до аммиака, который с избытком кислоты образует соли аммония. Такие металлы, как золото, платина, иридий, родий, ниобий, тантал, вольфрам, с азотной кислотой не реагируют. Большинство неметаллов восстанавливают азот- [c.132]

    Инертные металлические электроды изготавливают из химически стойких металлов золота, платины, иридия и др. Они служат переносчиками электронов от восстановленной формы к окисленной, и их потенциалы зависят от соотношения активностей этих форм в растворе. Стандартная конструкция электрода представляет собой металлический стержень, впаянный или вклеенный в нижний конец стеклянной или пластмассовой трубки. С помощью проводника металлический стержень присоединяют к измерительному прибору. Платиновые электроды используют для измерения окислительно-восстановительных потенциалов от -0,1 до +0,9 В, золотые - от -1,0 до +0,3 В. [c.173]


    Тетрафториды рутения, осмия и иридия наиболее удобно получать восстановлением их высших фторидов. Однако в случае родия и платины, переход которых в высшие окислительные состояния требует особых условий, не составляет трудности получать эти тетрафториды прямым окислительным фторированием. [c.405]

    Над тонки.м порошком иридия (полученным восстановлением при не Очень высокой температуре) пропускают при 600 °С ток сухого хлора с примесью СО. Реакция ускоряется прп освещении солнечным или УФ-све- [c.1836]

    Щавелевую кислоту вводят при аффинировании платиновых металлов для выделения золота и восстановления иридия(1У) до трехвалентного [177]. [c.77]

    Можно привести и другие примеры восстановления ионов металлов органическими веществами. Золь ванадиевой кислоты фотохимически восстанавливается этанолом в кислой среде. В гидрометаллургии для восстановления платины применяют щавелевую кислоту (150—200 г на 1 кг сырой платины), а для селективного восстановления иридия в присутствии платины используют сахар. На основе разложения органических соединений в процессах окисления-восстановления могут быть созданы новые эффективные способы осаждения и разделения ценных элементов. [c.103]

    Восстановление алкенов и алкинов [9]. Алкены и алкины восстанавливаются до алканов смесью муравьиной кислоты и формиата лития в присутствии Т. при 40—60°. В качестве катализаторов эффективны также трифенилфосфиновые комплексы рутения и иридия. [c.549]

    После переноса иридия в виде его оксида из материала 44 подачу кислорода прекращают и начинают подачу смеси азота и водорода, открывая второй контрольный клапан 27 скорость подачи составляет 0,1—0,45 м ч. После этого печь охлаждают со скоростью 30—40°С/ч. Из охлажденной печи вынимают трубку 4 и диск 5 и извлекают осажденный из них иридий. Иридий получают в виде чистого металла, а кислород, входящий в состав оксида, в процессе восстановления переходит в водяной пар и выводится из системы. [c.206]

    Восстановление родия и палладия металлической медью Осаждение иридия кипячением сернокислого раствора с КОН [c.50]

    Для скоростного восстановления иридиевых покрытий толщиной > 1 мкм применяют бромидный электролит, содержащий бромид иридия (5- 10 г/л) и бромистоводородную кислоту (40—45 г/л). Режим электролиза температура электролита 70—75°С, к = 0,15 0,2 А/дм . Т1к = 45%, скорость осаждения 1—2 мкм/ч, аноды — из платины. Покрытие получается серовато-белым матовым. При меньшем содержании бромида иридия в электролите и 75 —80°С осадки становятся блестящими. [c.191]

    В приводимых ниже методах анализа и разделения предполагается, если нет других указаний, что платиновые металлы и золото находятся в виде хлоридов или, точнее, в виде хлорокислот.. Платина, например, в растворах образует хлоре платиновую кислоту HaPt lg и в реакциях ведет себя как часть комплексного аниона. При анализе металлов платиновой группы и золота исходные растворы чаще всего содержат именно эти соединения. Поэтому в основе методов разделения обычно лежат реакции, свойственные этим комплексным анионам или ионам, образующимся в результате разложения таких комплексов. В отдельных случаях при анализе используются также и другие соединения этих металлов. Так, например, при отделении рутения дистилляцией или при отделении родия от иридия восстановлением солями титана (III) целесообразнее оперировать с растворами, в которых эти металлы находятся в виде сульфатов, а для успешного отделения многих неблагородных металлов от платиновой группы гидролитическим осаждением прибегают к предварительному переведению платиновых металлов в комплексные нитриты. [c.406]

    Раствор после отделения платины, палладия и теллура нагревают с Н2504 до паров серного ангидрида, разбавляют небольшим количеством воды и при кипячении отделяют родий от иридия восстановлением его до металла порошком сурьмы (см. гл. V, стр. 232). Конечное определение родия производят колориметрическим методом при помощи 2-меркапто-4,5-диме-тилтиазола (см. гл. IV, стр. 168). [c.284]

    Рябчиков д. И. и Нерсесова С. В. Количественное определение платины и иридия восстановлением однохлористой медью при потенциометрическом титровании. Изв. Сектора платины и др. благородных. металлов (Ин-т общей и неорган. химии им. Курнакова), 1945, вып. 18, с. 100—110. [c.210]

    Мак-Брайд и Клутт [480] установили, что в присутствии иридия восстановление висмутатом натрия ускоряется и результаты [c.93]

    Наиболее типичным способом приготовления таких катализаторов является нанесение иа поверхность носителя какого-либо соединения каталитически активного металла, с последующим его восстановлением илн термическим разложением. Этим достигается резкое увеличение удельной активности металла и экономия его, что особенно важно, когда катализаторами являются такие дорогие металлы, как платина, палладий, осмий, иридий и др. Носитель не только способен в небольших пределах изменять активность катализатора ои является одновременно промотором, а иногда влияет и на избирательность нанесенных катализаторов (М, Е, Ададуров) и термическую сто11кость их. [c.351]


    Процесс производства катализаторов риформинга многостадиен. Он включает приготовление носителя — оксида алюминия. Далее следует нанесение платины и других активных компонентов. После этого осуществляют сушку и прокаливание катализатора. Если это требуется, то прокаливание завершают газофазным хлорированием. Затем проводят восстановление катализатора. Ряд модификаций катализатора риформинга (например, содержащие рений и иридий) подЬергают осернению. Восстановление и осернение катализаторов обычно осуществляют на установках каталитического риформинга. [c.75]

    С, т. кип. 86° С. Смешивается с водой во всех отношениях. Азеотроп-ная смесь с водой содержит 68,4% НХОз и кипит при 121,9° С. Обычная 96—98%-ная НКОз — жидкость красно-бурого цвета. А. к. — сильный окислитель, реагирует почти со всеми металлами, образуя с ними соответствующие оксиды или соли — нитраты и выделяя оксиды азота. Устойчивы к действию А. к. золото, платина, родий, иридий и тантал. Такие металлы, как железо, хром, алюминий, пассивируются концентрированной А. к. за счет стойкости к действию А. к. оксидной пленки, образующейся на ее поверхности. Концентрированная А. к. окисляет серу до серной кислоты, фосфор — до фосфорной. Многие органические соединения под действием А. к. разрушаются и воспламеняются. Разбавленная А. к. более слабый окислитель, чем концентрированная продуктами восстановления ее сильными восстановителями могут быть гемиоксид азота, свободный азот н нитрат аммония. В лаборатории А. к. получают действием на ее соли концентрированной N3804 при нагревании. В промышленности разбавленную (45—55%) А. к. получа- [c.11]

    В более мягких условиях и с высокой селективностью протекает восстановление карбонильной группы при использовании литийалю-минийгидрида или бороги,ирида натрия  [c.84]

    Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам устойчивы к действию азотной кислоты. Некоторые металлы (например. Ре, А1, Сг) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. Обычно процесс восстановления HNOз протекает в нескольких параллельных направлениях и в результате получается смесь различных продуктов восстановления. Природа этих продуктов, их относительное содержание в смеси зависят от силы восстановителя, концентрации азотной кислоты и температуры. Рис. 48 иллюстрирует относительное содержание продуктов восстановления азотной кислоты железом в зависимости от ее концентрации. [c.263]

    Платиновая чернь — тонкий порошок платины, который получают восстановлением ее соединений. Применяют как катализатор в химических процессах. Ллатииовые металлы — рутений (Ru), родий (Rh), палладий (Pd) — легкие платиновые металлы осмий (Os), иридий (Ir), платина (Pt) — тяжелые платиновые металлы. В природе встречаются вместе с платиной. Все эти элементы стойки к химическим реагентам. [c.102]

    Потенциал электрода, изготовленного из благородного металла, например из платины, иридия, золота, палладия, чувствителен к присутствию в растворе любой окислительно-восстановительной системы, например Мп04 [Мп ", В этом случае металл является лишь посредником в обмене электронами между окисленной и восстановленной формами вещества. Хотя в действительности все электроды являются окислительно-восстановительными, термин редокс-электрод обычно применяют только к инертным металлическим электродам, находящимся в контакте с окисленной и восстановленной формами окислительно-восстановительной системы. При этом редокс-потенциалом называют потенциал инертного металлического электрода, обусловленный равновесием [c.116]

    Периодат-ион один из самых широко распространенных реагентов для окисления по реакции Малапрада органических соединений, имеющих гидроксигруппу, таких, как фенолы, хлорфенолы или вицинальные гликоли. Фенолы и их пр<жзводные можно определять в диапазоне концентраций от 50 до 500 мкг/мл методом фиксированного времени, измеряя оптическую плотность при 340 нм. В этой области находится максимум поглощения образующихся хи-толов и хинонов [6.2-1, 6.2-2]. Некоторые органические соединения, имеющие фармакож>тческое значение, такие, как витамины В1 и С, также можно определить при помощи реакции окисления — восстановления. Тиамин окисляется Н (11) до тиохрома —флуоресцирующего соединения, которое является индикаторным веществом в этом определении [6.2-3]. В данном случае кинетический метод является весьма чувствительным (предел обнаружения 2- 10 М). В настоящее время его используют для определения тиамина в различных лекарственных препаратах (смесях микроэлементов и поливитаминов). Катехоламины окисляются до о-бензохинонов гексахлоридом иридия и до аминохро-мов периодат-ионамн [6.2-4], что дает возможность определить адреналин и [c.336]

    Ни один из гексафторометаллатов(1У) нельзя синтезировать в водной среде, хотя сопи рутения, осмия и иридия удобно получать восстановлением гексафторометаллатов(У) в воде (см. разд. III, Г, 2). Соли родия, палладия и платины удобно получать в растворе трифторида брома [13, 15, 16]. Наиболее простой метод заключается во фторировании комплексных хлоридов или бромидов, например  [c.414]

    Для определения момента окончания реакции требуется некоторый опыт восстановления растворов Ir(IV) сероводородом до Nasilr U] — без образования сульфидов. Получают иридий высокой чистоты с выходом >80%. Термическое разложение (ЫН4) 1гС1б] начинается >200 С. Выше 700 °С реакция Ir с кислородом приводит к потерям металла вследствие образования газообразного 1гОз. Таким образом, разложение хлороиридата аммония следует проводить, медленно повышая температуру от 200 до 500 °С. [c.1835]

    Муравьиная кислота не полностью восстанавливает растворы иоидия до металла восстановленный металл трудно растворяется в царской водке. Взбалтывание раствора иридия с серебром или ртутью не восстанавливает иридия до металла (отличие от Pt, Pd и Au). [c.580]

    Восстановление циклогексанонов. Хенбест и Митчелл [2] детально описали метод восстановления замещенных циклогексанонов преимущественно в аксиальные спирты с использованием растворимого иридий-фосфитного катализатора. Катализатор получают in situ из И. т. и фосфористой кислоты (или легко гидролизуемого сложного эфира этой кислоты). По этой методике аксиальный спирт получается с выходом 96% и более. [c.134]

    Как отмечалось ранее (IV, 134), при восстановлении А-трет-бутилциклогексанона в г г/с-4-тр< - г/г-бутилЦ11Клогексанол Илиел и Дойль использовали трихлорид иридия. Однако этот реагент долгое время не был доступен в новой методике iU в качестве катали- [c.222]

    Для восстановления 4-трет-бутилциклогексанона до соответствующего г с-спирта Илиел и Дойль I2l использовали трихлорид иридия и вначале получили хорошие резулг таты (см. IV, 134)-. Однако позднее Илиел 131 отмечал, что из-за непостоянной растворимости продажного трихлорида иридия в НС1 эта методика не всегда воспроизводима . Затем он обнаружил, что трихлорид иридия можно с успехом заменить тетрахлоридом, Эту новую методику см. в разделе Иридия тетрахлорид (т. V, стр. 222). [c.516]


Смотреть страницы где упоминается термин Иридий восстановление: [c.628]    [c.641]    [c.628]    [c.357]    [c.417]    [c.496]    [c.657]    [c.569]    [c.407]    [c.408]    [c.1835]    [c.516]    [c.359]    [c.633]    [c.359]   
Структура металических катализов (1978) -- [ c.207 , c.209 ]

Аналитическая химия благородных металлов Часть 2 (1969) -- [ c.2 , c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Иридий

Иридий-191 и иридий



© 2025 chem21.info Реклама на сайте