Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен взрыв с кислородом

    Имеются также предположения, что при реакции между ацетиленом и кислородом образуются особого рода перекиси, обладающие исключительной неустойчивостью [4]. Период жизни их настолько мал при обычных условиях, что пока не удалось их выделить и подробно изучить. Чрезвычайно неустойчивые в обычных условиях перекиси могут, однако, обладать определенной стабильностью при низких температурах. Как все перекиси, они могут разлагаться с выделением тепла от механических воздействий и служить импульсом взрыва. [c.100]


    Парсонс испробовал все известные методы синтеза и ввел в практику новые, а именно стрельбу высокоскоростной винтовочной пулей в полость, содержащую испытуемое вещество. В первом варианте использовалось ружье дл охоты на уток калибра 0,9 дюйма, которое стреляло стальным поршнем в цилиндр, содержащий ацетилен и кислород. Ружье заряжалось двумя драхмами черного охотничьего пороха, причем это количество было определено предварительными испытаниями . Компрессия составляла 288 к 1, и Парсонс рассчитал, что при взрыве достигаются давление 15 000 атм и температура 15 250° С, хотя последняя оценка весьма оптимистична. Еще более высокие давления ожидалось получить при стрельбе из ружья калибра 0,303 дюйма в небольшое количество графитовой шихты. По расчетам Парсонса, выполненным на основании изучения деформаций блока, в который выстреливалась пуля, при этом мгновенно возникало давление, достигающее 300 ООО атм. В этих экспериментах получалось лишь несколько очень мелких кристаллов, похожих на алмаз . Парсонс полагал, что только лишь приложение высоких давлений не может привести к образованию алмазов хотя бы потому, что они составляют от четверти до половины давлений, существующих в центре Земли . Он пришел к выводу, что для успешного синтеза алмаза требуется присутствие железа, несмотря на то что получил отрицательные результаты, когда повторял опыты Муассана при давлениях по крайней мере в три раза больших, чем те, которых мог достичь Муассан. [c.68]

    Гордеев и Матвеев исследовали [215] инициирование взрыва кавитацией (нри 1 атм) следующих ЖВВ нитроглицерин (НГЦ), тетранитрометан (ТНМ), нитрометан (НМ), растворы бензола, гептана, метанола в ТНМ, раствор метана в жидком кислороде при температуре кипения азота) и гетерогенная система твердый ацетилен — жидкий кислород (так же при температуре кипения азота). Была разработана оригинальная методика создания крупных кавитационных полостей, позволившая впервые подробно изучить явления. Использовалась пробирка с хорошо пригнанным поршнем, под который вводили исследуемое вещество. Жидкостной затвор в виде конической воронки, заполненной тем же 13В, позволял изолировать жидкость под поршнем от воздействия атмосферного давления в течение нескольких миллисекунд. Быстрое выдергивание поршня создает растягивающее напряжение в жидкости, сплошность ВВ нарушается и образуются каверны Взрыв возбуждался при захлопывании кавитационных пузырьков в растворах бензола или гептана в тетранитрометане. В техническом НГЦ взрывы удалось возбуждать путем применения поршня с заостренным концом. [c.267]

    При смешивании ацетилена с газами, вступающими с ним в реак- цию, способность таких смесей к взрыву возрастает. Так например, ацетилен в смеси с хлором взрывается даже при действии света. В смеси с кислородом ацетилен взрывается при атмосферном давлении, если нагреть смесь до температуры 300° С, причем содержание ацетилена в смеси может колебаться в весьма широких пределах — ют 2,3 до 93%. [c.16]


    Газообразный винилацетилен не окисляется кислородом воздуха, но в жидкой фазе легко образует перекиси, которые остаются после испарения винилацетилена в виде желтой взрывчатой массы. Винилацетилен способен полимеризоваться со взрывом кислород инициирует реакцию полимеризации, а вода замедляет этот процесс. Поскольку в молекуле винилацетилена имеются двойная и тройная связи между атомами углерода, он легко вступает во все химические реакции, свойственные ацетилену и этилену. Следует отметить, что гидрирование винилацетилена проходит через стадию образования бутадиена  [c.37]

    Если ацетилен взрывается в воздухе и кислороде, то вслед за ним возникают реакции соединения углерода и водорода с кислородом, что усиливает эффект взрыва. [c.375]

    Опыты 3. Б. Басырова показали, что ударной волной почти всегда удается вызвать взрыв смеси ацетилен— жидкий кислород с содержанием 5—6% ацетилена по массе. Прн вымораживании ацетилена на стенках сосуда, когда толщина слоя достигает 1,5—2 мм, величина начального давления, необходимого для создания импульса и возникновения взрыва, значительно уменьшается. Для того чтобы в воздухоразделительных аппаратах не накапливалось большое количество ацетилена, необходимо устранять источники загрязнения воздуха ацетиленом, строго соблюдать установленный режим работы и регулярно производить анализ жидкого кислорода из конденсатора и кубовой жидкости на содержание ацетилена.  [c.705]

    В смеси с жидким кислородом взрывоопасны все углеводороды, но наибольшую опасность представляет смесь ацетилен — жидкий кислород. Эта смесь взрывается при наименьшей величине начального импульса (механического удара, ударной газовой волны). Установлено также, что при содержании ацетилена в жидком кислороде ниже предела его растворимости в кислороде система не взрывоопасна. Взрыв может происходить при насыщении жидкого кислорода ацетиленом выше предела растворимости, при выделении ацетилена в виде суспензии или при высаживании его на стенках сосуда в твердом виде. [c.695]

    Опыты 3. Б. Басырова показали, что ударной волной почти всегда удается вызвать взрыв смеси ацетилен — жидкий кислород, содержащей 5—6 вес. % ацетилена. При вымораживании ацетилена на стенках сосуда, когда толщина слоя достигает 1,5—2 мм, величина начального давления, необходимого для создания импульса и возникновения взрыва, значительно уменьшается. [c.697]

    Опыты 3. Б. Басырова показали, что ударной волной почти всегда удается вызвать взрыв смеси ацетилен— жидкий кислород с содержанием 5—6% ацетилена по массе. При вымораживании ацетилена на стенках сосуда, когда толщина слоя достигает [c.705]

    Ацетилен транспортируют в стальных баллонах, где он содержится растворенным в ацетоне под давлением до 25 ат. Баллоны заполняют пористой массой, адсорбирующей раствор ацетилена при этом ацетон растворяет около 300 объемов ацетилена. Хранить в баллонах жидкий ацетилен нельзя из-за опасности взрыва. Разложение жидкого ацетилена со взрывом происходит под влиянием тепла, ударов, трения, сжатия, под действием запала. В смеси с кислородом ацетилен взрывает при атмосферном давлении. В смеси с хлором ацетилен взрывает уже под действием света. [c.52]

    В смеси с кислородом ацетилен взрывает при атмосферном давлении. [c.104]

    При атмосферном давлении чистый газообразный ацетилен безопасен, но под давлением выше 2 ат или в жидком виде он становится взрывоопасным. Жидкий ацетилен представляет собой сильно взрывчатое вещество уже при обыкновенной температуре. Разложение его со взрывом происходит под влиянием тепла, ударов, трения, сжатия, под действием запала. В смеси с кислородом ацетилен взрывает при атмосферном давлении. [c.48]

    Ацетилен дает с воздухом и особенно с кислородом очень взрывчатые смеси. При сжатии чистый неразбавленный ацетилен может распадаться со взрывом и с образованием сажи. [c.249]

    Наиболее характерные случаи аварий вызваны повышением содержания кислорода в газах пиролиза с последующим их взрывом в аппаратуре, загоранием ацетилена в трубопроводах в момент сброса взрывоопасных газов на факел, подсосом воздуха в аппаратуру с ацетиленом, загоранием полимеров при их выгрузке и транспортировании из испарителей. [c.30]

    Разделение воздуха осуществляют главным образом глубоким охлаждением, сжижением и последующей ректификацией. Готовой продукцией воздухоразделительных установок являются газообразные и жидкие кислород и азот. На установках высокого давления кроме кислорода получают аргон и неоногелиевую смесь. Жидкий кислород представляет собой прозрачную голубоват/ю быстро испаряющуюся при комнатной температуре жидкость. При испарении 1 л жидкого кислорода при 20 °С и нормальном давлении образуется 860 л газообразного кислорода. Горючие газы (водород, ацетилен, метан и др.) образуют с кислородом взрывчатые смеси. Смазочные масла, а также их пары, при соприкосновении с чистым кислородом способны к самовоспламенению со взрывом. [c.121]


    Ацетилен, попадая в воздухоразделительные установки в количестве, превышаюш,ем его пределы растворимости в жидком кислороде или азоте, выпадает в твердом виде, осаждается на трубках конденсатора. Замороженный твердый ацетилен представляет большую опасность. При нагревании он может полимеризоваться или переходить в неустойчивое взрывчатое комплексное соединение. Большинство аварий, связанных со взрывами ацетилена, происходило во время отогрева или повторного запуска ВРУ. Максимальная растворимость ацетилена в жидком О2 составляет-2,28 см /л ири температуре сжижения кислорода. В соответствии с [c.370]

    Основные опасности при эксплуатации кислородных баллонов обусловлены возможностью их взрыва при неблагоприятных обстоятельствах, связанных с утечкой кислорода или попаданием в баллоны органических примесей. В практике отмечались случаи разрушения баллонов вследствие попадания в них горючих газов. Загрязнение баллона горючим газом даже в незначительном количестве представляет большую опасность. Такие случаи происходили при ошибочном использовании пустого кислородного баллона (в отсутствие давления газа внутри) для ведения автогенных работ. В результате горючий газ (ацетилен, пропан, бутан и др.), имея более высокое давление, через автогенную горелку проникал в кислородный баллон. Подобные случаи возможны при ведении автогенных работ с неисправными редукторами, горелками или вентилями, когда давление горючего газа превышает установленные пределы и создаются условия проникновения этого газа в кислородный баллон. [c.378]

    Известен случай, когда на одном предприятии вследствие крайней нерегулярности слива жидкого кислорода из отделителя и повышенной загрязненности перерабатываемого воздуха в слитом жидком кислороде были визуально обнаружены плавающие капли другой жидкости. Анализом было установлено, что эти капли состояли в основном из этилена и пропилена. В состаЕ капель также входили ацетилен, бутилен и другие углеводороды. Опасность такой гетерогенной системы подтверждается тем, что на этом же предприятии ранее произошел взрыв в ведре с жидким кислородом, слитым из отделителя. [c.20]

    Важным выводом из рассматриваемой работы является также то, что взрывы легко инициировались в смесях жидкого кислорода с этиленом, ацетиленом и другими углеводородами при содержании их, меньшем, чем составы нижних пределов воспламеняемости в газовой фазе, но при условии, если был превышен предел их растворимости в жидком кислороде. Авторами была проде- [c.46]

    Данные испытаний подтвердили, что активный глинозем и силикагель испытанных марок с адсорбированными совместно продуктами разложения масла и ацетиленом в условиях проведенных испытаний в среде жидкого кислорода не взрываются от удара, искры и детонатора. [c.63]

    При вспышках в клапанных коробках и нагнетательных трубопроводах компрессоров, работающих при повышенных температурах, количество образующихся продуктов разложения масла может быть очень большим. Известны случаи, когда при анализах жидкого кислорода, взятого из конденсаторов после вспышки в компрессоре, обнаруживали ацетилен в количествах, превышающих его растворимость в жидком кислороде. Известны также случаи взрывов в конденсаторах и адсорберах, которые произошли непосредственно после вспышки в компрессоре. [c.133]

    Горючие газы. Горючие и поддерживающие горение сжатые и сжиженные газы (ацетилен, водород, кислород, бутан и др.) получают и хранят в баллонах. Работа с газами, находящимися в баллонах, требует большой осторожности, внимания и строгого соблюдения установленных правил обращения с ними. При нарушении этих правил и инструкций может произойти взрыв баллона с тяжелыми для работающего последствиями. Неопытным работникам, приступающим к работе с горючими газами, находящимися в баллонах под большим давлением, необходимо тщательно однакомиться с правилами о порядке работы с данным газом. [c.118]

    Проведенные опыты в СССР (3. П. Басыров) и за рубежом (Карват) показали, что в смеси с жидким кислородом взрывоопасны все углеводороды, но наибольшую опасность представляет смесь ацетилен—жидкий кислород эта смесь взрывается при наименьшей величине начального импульса (механического удара, ударной газовой волны). Установлено также, что при содержании ацетилена в жидком кислороде ниже предела его растворимости в кислороде система не взрывоопасна. Взрыв может происходить при насыщении жидкого кислорода ацетиленом выше предела растворимости, при выделении ацетилена в виде суспензии или при высаживании его на стенках сосуда в твердом виде. Такие углеводороды, как метан, этан, этилен, достаточно хорошо растворяются в жидком кислороде и воздухе и поэтому не накапливаются в аппаратах в твердом виде. Растворимость метана, например, в 300 раз больше, чем ацетилена меньшей растворимостью, чем указанные выше углеводороды, обладают пропан, пропилен, бутан и бутилен поэтому они представляют большую опасность в случае высокого содержания их в перерабатываемом воздухе. Наиболее опасен пропилен по способности к взрыву он находится на втором месте после ацетилена. [c.703]

    Ударные волны в ацетилене под давлением 30 ат, возникающие при разрыве алюминиевой диафрагмы азотом под давлением 100—135 ат, не вызывали воспламенения ацетилена [10]. Внутренний диаметр трубок, в которых проводились эти испытания, составлял 4, 8 и 12 мм. Время разрыва диафрагмы 1 мсек. В трубке диаметром 7,6 см через ацетилен распространялись ударные волны, возникающие при разрыве мягкого никелевого диска, установленного между фланцами, которые разделяли трубку на длинную камеру низкого давления, где содержался цетилен (3 ат), и короткую камеру высокого давления [11]. Взрыва ацетилена не происходило, если в качестве толкающего газа служил азот под давлением 90 ат. Но при использовании воздуха под давлением 10 от или кислорода под давлением 18 ат ацетилен взрывался. Это свидетельствует о том, что во фронте ударной волны происходит некоторое смешение толкающего газа и ацетилена. Ударная волна, возникающая при использовании кислорода под давлением 65 ат, инициировала взрыв в ацетилене, давление которого составляло всего [c.451]

    В этом направлении следует отметить первые работы Бона и Андрью [7]. Они показали, что реакция между ацетиленом и кислородом в запаянной трубке при атмосферном давлении начинается при температуре 250° и быстро протекает при 300°. Для смесей 2С.,Н2- -02 и С Нг-)- разложение со взрывом наступает при 350°, а для смеси 2С2Н 302 —приблизительно при 375°. В ранней стадии реакции образуются одновременно окись углерода и формальдегид. [c.175]

    В Гётеборге (Швеция, 1971 г.) на строительной площадке под открытым небом находились 78 баллонов со сжиженным пропаном (для газосварки и газорезки). Вблизи площадки загорелось строительное сооружение и через 10 мин взорвались дэа баллона. Тушение пожара пришлось вести из укрытия, чтобы не подвергать опасности пожарных. Взорвались 30 газовых баллонов, из которых 24 содержали сжиженный пропан, четыре — кислород и два — ацетилен. После пожара на многих баллонах, содержащих сжиженный пропан, были обнаружены небольшие трещины. Некоторые баллоны разорвались на куски, а два баллона от взрыва раскатались до плоского листа. От взрыва баллонов сильно пострадал четырехэтажный жилой дом, находившийся на расстоянии 25 м от места пожара. [c.143]

    Являясь экзотермическим соединением, ацетилен в опеределен-ных условиях способен к взрывному разложению в отсутствие кислорода или других окислителей. При этом выделяется энергия (8,7 МДж/кг), которой достаточно, чтобы разогреть продукты реакции до 2800 °С. Ацетилен способен к самопроизвольному разложению при горении, взрыве, детонации и каскадном разложении. Конечное давление газов зависит от характера разложения. При взрыве скорость распространения пламени достигает нескольких метров в секунду, а конечное давление, являясь функцией развиваемой температуры, возрастает по сравнению с начальным в 8—12 раз. Давление детонационной волны до ее отражения от стенки (а также от торца, изгиба и т. д.) может увеличиться в 30 раз, а в отражаемой волне в 50-—100 раз. [c.20]

    Для предупреждения взрыва газов в аппаратуре, в рабочих помещениях и наружных установках производства ацетилена из метана предусматривают сигнализацию о достижении температуры компримируемого. ацетилена-концентрата 90 °С и систему автоматического отключения компрессора при температуре газа 100°С. Вакуум-насосы и вакуум-компрессоры снабжают устройствами постоянного автоматического контроля содержания кислорода. При содержании кислорода в ацетилене 0,2% (об.) сигнализация срабатывает. В помещениях, опасных с точки зрения выделения газа, устанавливают газоанализаторы. Сигнализаторы наличия горючих газов должны настраиваться на концентрацию 20% от нижнего предела взрываемости. [c.33]

    При эксплуатации взрывоопасных производств неоднократно происходили взрывы в результате воспламенения огнеопасных веществ. В ряде случаев взрывы были вызваны проскоком газов, воспламенявшихся в присутствии кислорода. В производстве ацетилена, а также в ряде других производств, в которых присутствует ацетилен, особую опасность представляет образование ацети-ленистой меди, которая на воздухе может взорваться. Поэтому з производствах, связанных с применением газовых фракций, содержащих ацетилен, не допускается применение оборудования и деталей из меди. В процессах, связанных с переработкой ацетилена на. медьсодержащем катализаторе, принимают другие меры, исключающие образование ацетиленидов меди. Например, для предупреждения образования металлической меди и контакта ее с ацетиленом процесс ведут в кислой среде солей меди. [c.337]

    При проектировании н эксплуатации предприятий особое внимание должно уделяться системам сжигания ацетилена и ацетиленсодержащих газоз. Ацетилен, являясь эндотермическим соединением, легко разлагается п при определенных условиях способен к взрывчатому разложению в отсутствие кислорода. Эта характерная особенность, а также широкий диапазон концентрационных пределов воспламенения с кислородом делают ацетиленсодержащие газы особенно опасными и требуют соблюдения дополнительных мер безопасности при их сжигании на факелах. Однако характерные особенности взрывоопасных и детонационных свойств ацетилена не всегда учитываются. Поэтому при эксплуатации производств, связанных с получением и переработкой ацетиленсодержащих газов, происходит большое число аварий. Взрывы ацетиленовоздушных смесей происходили в аппаратуре и трубопроводах факельных систем. Известны случаи разложения ацетилена со взрывом в факельном стволе и прогара ацетиленопроводов на участках между стволом и огнепреградителем. Отмечены случаи загорания н разложения со взрывом в системе, приводившие к разрыву шпилек и отрыву штуцеров в верхней части огнепреградителя. [c.212]

    Предполагают, что ацетилен и закись азота попали в конденсатор в результате частичной регенерации силикагелевого фильтра во время отключения установки без полного размораживания за шесть месяцев до взрыва. Оставалось неясным, почему в течение шести месяцев не взорвалась взрывчатая смесь в конденсаторе, если она в него попала. Исследования показали, что твердый ацетилен очень медленно растворяется в жидком кислороде. Растворимость же закиси азота приблизительно в 27 раз больше растворимости ацетилена. Твердое вещество, отложившееся виачале, преимущественно содержало закись азота [90% (мол.)], а поэтому было невзрывоопасным. Как показали расчеты и подтвердили эксперименты, через шесть месяцев твердый слой ацетилена толщиной 1 мм растворился, что и привело к образованию взрывчатой смеси. [c.372]

    Для оценки возможности образования взрывоопасных концентраций рассмотрим условия взрываемости смеси С2Н2, О2 и СН4 (см. рис. 23,6), которая в какой-то мере характеризует состав газов пиролиза. Взрыв данной смеси при содержании около 10% ацетилена возможен только в том случае, если в ней находится не менее 40% кислорода. Практически это невозможно, так как при таком содержании кислорода в газах пиролиза ацетилен отсутствует. [c.58]

    С. Технический ацетилен, получаемый из карбида Kajibuw , пахнет неприятно из-за имеющихся в нем примесей. На воздухе ацетилен горит сильно коптящим пламенем. При его сгорании выделяется большое количество теплоты. Поэтому ацетилен в смеси кислородом широко используют для сварки и резки металлов (автогенная сварка температура пламени до 3150 С). Взрывоонзсен смеси с воздухом, содержащие от 2,3 до 80,7% ацетилена, взрывают от искры. Трудно растворим в воде под небольшим давле)1ием (1,2—1,5 МПа) хорошо растворяется в ацетоне (до 300 объемов) и в таком виде безопасен. [c.473]

    В бывшем Институте азота (ГИАП) опыты Поллит-цера были повторены в 1937—1938 гг. в стеклянных сосудах, но при этом ни разу не удалось взорвать смесь жидкого кислорода с твердым ацетиленом. Смесь взрывалась только при добавлении 1 г озона на 1 дм кислорода [17]. [c.45]

    Твердый ацетилен в жидком азоте, содержащем до 2% кислорода, не взрывается при давлении разрыва диафрагмы 13,3 Мн1лё (133 ати). [c.55]

    При внедрении адсорберов ацетилена в промышленные установки в СССР и за границей были проведены опыты по изучению взрываемости силикагеля, насы-шенного ацетиленом в динамических условиях, в среде кубовой жидкости, а также силикагеля, насыщенного ацетиленом в статических условиях, в среде жидкого воздуха. Результаты опытов показали, что ацетилен, адсорбированный на силикагеле, в обогащенном жидком воздухе и в жидком кислороде не взрывается. Однако при эксплуатации воздухоразделительных установок имело место несколько взрывов в адсорберах. В связи с этим под руководством И. П. Ишкина была еще раз проверена взрываемость системы адсорбированный ацетилен — адсорбент — жидкий кислород, а также системы адсорбированные продукты разложения масла — адсорбент — жидкий кислород, данные по взрываемости которых отсутствовали. [c.61]

    Из всех примесей воздуха наиболее опасным для воздухоразделительных установок считают ацетилен, так как он химически неустойчив и активен, что объясняется наличием тройной углеродной связи. Как было показано в главе II, ацетилен в смеси с жидким кислородом является наиболее чувствительным к импульсу удара из всех исследованных углеводородов. Рядом исследователей было показано, что система жидкий кислород — твердый ацетилен становится наиболее чувствительной в тех случаях, когда кристаллы ацетилена при испарении жидкого кислорода начинают оголяться и сообщаются с газообразным кислородом. Известно, что твердый ацетилен может взрываться и при отсутствии кислорода, но для этого необходим очень мощный импульс. Так, по литературным данным [45], энергия зажигания твердого ацетилена составляет при давлении 0,14 Мн мР-(1,4 кГ см ) более 11 дж, а энергия зажигания газооб-зазного чистого ацетилена при том же давлении 10 дж. 3 то же время энергия зажигания ацетилено-кислород-ных смесей при давлении 0,1 Мн1м (1 кГ смР ) составляет всего 0,019 мдж, или в 5X10 раз меньше, чем энергия, необходимая для зажигания твердого ацетилена. [c.99]

    Для ацетилено-кислородной сварки наиболее безопасно и удобно использовать ацетилен из баллонов, получаемых на наполнительных станциях, однако ацетилен часто получают разложением карбида кальция водой в передвижных генераторах. Эксплуатация генераторов может оказаться опасной по ряду причин, главными из которых являются повышение температуры или давления ацетилена в генераторе, загрузка генератора карбидом несоответствующей грануляции, образование взрывчатых смесей ацетилена с воздухом или кислородом или образование врывчатых соединений ацетилена, отсутствие или ненормальная работа водяного предохранительного затвора. Проникновение воздуха в аппарат в случае неисправности водяного затвора может привести к взрыву генератора вследствие обратного удара пламени горелки. [c.75]

    В обычных условиях горение представляет собой процесс окисления или соединения горючего вещества и кислорода воздуха, сопровождающийся выделением тепла и света. Однако известно, что некоторые вещества, папример сжатый ацетилен, хлористый азот, озон, взрывчатые вещества, могут взрываться и без кислорода воздуха с образованием тепла и пламени. Следовательно, горение может явиться результато.м не только реакции соединения, но и разложения. Известно также, что водород и многие металлы могут гореть в атмосфере хлора, медь — в парах серы, магний — в диоксиде углерода и т. д. [c.119]


Смотреть страницы где упоминается термин Ацетилен взрыв с кислородом: [c.702]    [c.694]    [c.702]    [c.349]    [c.241]   
Лекционные опыты и демонстрационные материалы по органической химии (1956) -- [ c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Взрыв

Взрывы ацетилена



© 2024 chem21.info Реклама на сайте