Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки теории строения

    Гипотеза Данилевского была развита немецким ученым Э. Фишером, который в 1902 г. продолжил и экспериментально обосновал полипептидную теорию строения белков. Согласно этой теории в белковых молекулах имеются полипептидные цепи различной длины. Если строение а-аминокислот представить общей формулой (I), то образование полипептидной цепи (II) можно изобразить схемой [c.290]


    Химический синтез полипептидов и современные физико-химические методы исследования белков полностью подтвердили существование пептидных связей в структуре белка. Получены следующие экспериментальные доказательства полипептидной теории строения белка. [c.50]

    Однако только Э. Фишер (1902) сформулировал полипептидную теорию строения. Согласно этой теории, белки представляют собой сложные полипептиды, в которых отдельные аминокислоты связаны друг с другом пептидными связями, возникающими при взаимодействии а-карбоксильных [c.49]

    Существенным подтверждением полипептидной теории строения белка является возможность синтеза чисто химическими методами полипептидов и белков с уже известным строением инсулина-51 аминокислотный остаток, лизоцима-129 аминокислотных остатков, рибонуклеазы -124 аминокислотных остатка . Синтезированные белки обладали аналогичными природным белкам физико-химическими свойствами и биологической активностью. [c.51]

    Молекулы, которыми занимается биофизика, характеризуются многими особенностями, отличающими их от молекул неживой природы. Белки — самые сложные из известных нам молекул. Будучи макромолекулами, белки и нуклеиновые кислоты не являются статистическими системами, в отличие от макромолекул синтетических полимеров. Это — динамические системы, своего рода машины, поведение которых определяется положением и функциональностью каждого элемента, образующего молекулу. Основная задача молекулярной биофизики состоит в исследовании специфических особенностей, определяющих строение и свойства биологических молекул. Физическая теория, с которой приходится иметь дело в молекулярной биофизике, есть теория строения и физических свойств этих молекул и одновременно теория методов исследования, применяемых в эксперименте. [c.9]

    Предполагалось, что дикетопиперазины вкраплены в пептидную цепь и разделяют ее на небольшие отрезки. Переломным и решаюш им явился 1941 г., когда Гордон, Мартин и Синдж предложили применять для разделения продуктов гидролиза белков метод хроматографии на бумаге. Появившиеся вслед затем методы электрофореза, противоточного распределения и метод ионообменных смол позволили исследователям получить необходимый для обоснования теории строения белка экспериментальный материал. [c.521]

    В рассмотренной конформационной теории белка не постулируется образование в процессе структурной самоорганизации вторичных, регулярных структур. а-Спирали и р-складчатые листы должны автоматически появляться по ходу расчета на тех участках последовательности, где они оказываются самыми предпочтительными по энергии. Не привлекаются также данные рентгеноструктурного анализа белков и результаты их статистической обработки. Физическая теория и соответствующий расчетный метод исходят только из отмеченных выше четырех принципов, знания аминокислотной последовательности и валентной схемы белковой молекулы. Таким образом, в отношении пространственного строения белка теория является априорной. Предсказание трехмерной структуры строится на количественной оценке взаимодействий между всеми валентно-несвязанными атомами. При этом, однако, не требуется делать специальных предположений о роли в пространственной организации белковой молекулы водородных связей, ионных пар, дисульфидных мостиков и других видов взаимодействий. Так называемые гидрофобные [c.106]


    Первая теория строения белков была предложена Г. Мульдером, ее поддерживали И. Берцелиус, Ю. Либих, Ж. Дюма. Она называлась теория протеина и предполагала, что белки состоят из минимальных структурных единиц - протеинов. А.Я. Данилевский в 80-х годах XIX в. доказал, что белки состоят из аминокислот, соединенных такими же связями, как в биурете  [c.23]

    Структурную основу мембран составляют липиды, а функциональную роль выполняют белки, которые являются ферментами, транспортными белками, рецепторами, переносчиками, образующими поры, каналы и насосы. Существуют две основные теории строения мембран. [c.107]

    Полипептидная теория строения не отрицает существования в молекуле белка и других связей, включая ковалентные (например, дисульфидные —8—8-связи) и нековалентные (например, водородные связи и др.). Они будут рассмотрены далее. [c.51]

    Основные научные исследования посвящены теории дифракции рентгеновских лучей и рентгеноструктурному анализу. Независимо от русского кристаллофизика Ю. В. Вульфа установил (1913) соотношение между длиной волны рассеянных кристаллом рентгеновских лучей, величиной угла отклонения этих лучей после рассеяния и константами кристаллической решетки, лежащее в основе рентгеноспектрального анализа. Определил (1928) посредством рентгенографических методов строение силикатов. Совместно с Дж. Д. Берналом и Л. К- Полингом заложил (1946—1950) основы структурного анализа белка. Исследовал строение многих белковых тел. Был одним из инициаторов применения рентгеноструктурных методов для исследований в области молекулярной биологии. [c.83]

    Полипептидная теория строения белка была предложена немецким исследователем Э. Фишером (1902 г.). Согласно этой теории белок представляет собой неразветвленную цепь аминокислот, соединенных пептидными связями, что подтверждается образованием аминокислот как конечных продуктов гидролиза белка. Полипеп-тидное строение белка установлено также независимыми физикохимическими методами. [c.277]

    Современная теория строения является исходной платформой для дедуктивного изучения органических веществ по отдельным классам, расположенным по мере усложнения их строения и подводящим учащихся к пониманию жизненно важных органических веществ — жиров, белков и углеводов. Последовательность изучения этих классов показана в схеме 3.6. [c.244]

    Кроме ряда научных данных, используемых в теории строения вещества, рентгеноструктурный анализ органических кристаллов оказывает помощь органической химии при установлении строения отдельных соединений. Так, например, по данным, полученным этим методом, из нескольких возможных химических формул пенициллина была выбрана одна. Рентгеновский анализ был применен для исследования строения многих десятков стероидов при этом выяснилось, что некоторым стероидам приписывались неправильные пространственные конфигурации. При помощи этого метода была полностью расшифрована структура такого сложного вещества, как фталоцианин. Рентгеновский метод позволяет надежно определять молекулярные веса белков для этого необходимы хорошо образованные кристаллы белков, дающие возможность получать хорошие снимки. [c.742]

    Полученные Э. Фишером результаты, и особенно его пептидная теория строения белков, воодушевили многих ученых на дальнейшее изучение их структуры. Эти исследования с начала текущего столетия велись широким фронтом и касались не только изучения продуктов расщепления белков, но и попыток синтеза веществ, подобных белку, из аминокислот и пептонов. Появились также различные теории строения белковых молекул. Большое значение в этих" исследованиях получили физико-химические методы, в частности определение молекулярных масс самих белков и продуктов их расщепления и синтетически полученных полипептидов. [c.261]

    Пептиды образуются при частичном гидролизе белков. Пептидная теория строения белка была развита Э. Фишером и в настоящее время окончательно подтверждена. [c.504]

    Белковые вещества, существенно отличаясь по своей химической природе от обычных мыл и являясь высокомолекулярными соединениями, имеют с мылами общее свойство — они обладают поверхностной активностью, а вследствие этого и солюбилизирующей способностью, впервые экспериментально установленной Талмудом. Явление солюбилизации (гидрофобного связывания) в белковых системах представляет большой интерес, как с точки зрения теории строения белка, так и в отношении изучения биологически важных процессов переноса и обмена веществ в живом организме, а также позволяет получить новые данные применительно к теории [c.394]

    Данилевский Александр Яковлевич (f 838—f 923). Академик. Один из основоположников отечественной биохимии, в I888 г. предложил теорию строения белковой молекулы. Экспериментально доказал, что действие сока поджелудочной железы на белки представляет собой гидролиз. Изучал белки мышц (миозин), обнаружил антипепсин и антитрнпсин. [c.18]


    Изучая связи аминокислот в белках, крупный русский биохимик А. Я. Данилевский в 1888 г. высказал предположение, что основной тип связей аминокислот в белках — связь —СО—ЫН—. Немецкий химик Э. Фишер в начале нашего столетия развил дальше эти представления и назвал связь —СО—ЫН— пептидной. Он создал теорию строения белков, которая получила название пептидной теории. [c.203]

    Путь синтеза принес блестящее подтверждение полипептидной теории строения белка. Фишер синтезировал полипептиды из аминокислот, являющихся конечными продуктами гидролиза белков. Оказалось, что ряд синтетических полипептидов обладает теми же свойствами, что и полипептиды, являющиеся промежуточными продуктами гидролиза. Полипептид с 18 остатками аминокислот, синтезированный Фишером, по ряду свойств приближался к пептонам. [c.384]

    Надо, однако, отметить, что по мнению большинства исследователей изложенная выше дикетопиперазиновая теория строения белка не может рассматриваться как строго экспериментально доказанная. С этой точки зрения дикетопиперазины образуются при гидролизе белков в результате вторично возникающих реакций. [c.45]

    Пожалуй, наиболее крупным достижением А. Я. Данилевского надо признать его идеи о пептидном строении молекул белка. Теория строения белков, как сложнейших полипептидов, обычно связывается с именами Гофмейстера и особенно Фишера. Действительно, Гофмейстер (263) в докладе на 74 съезде немецких естествоиспытателей (Карловы Вары, сентябрь 1902 г.) высказал мысль о линейномстроениибелковоймолекулы из остатков [c.264]

    Помимо полипептидной теории строения белков, существует и другая точка зрения, впервые выдвинутая в 1923 г. Н. Д. Зелинским и В. С. Стадниковым. Согласно этим представлениям аминокислотные остатки в белковых молекулах соединены между собой не только в виде цепей, но и в виде колец — циклических ангидридов — дикетопиперазинов  [c.338]

    Строение. Первая гипотеза о строении молекулы белка была предложена еще в 70-х годах XIX в. Это была так называемая уреидная теория строения белка. [c.258]

    В 20-х годах Н. Д. Зелинский со своими учениками выдвинул дикетопиперазиковую теорию строения белка, согласно которой основу белков составляют циклические (гетероциклические) структуры, построенные из аминокислот — дикетопиперазины. Дикетопи-перазины Н. Д. Зелинский получал при гидролизе белков под давлением. В настоящее время нет сомнения в том, что эти структуры не составляют основу молекул белка, а образуются в процессе гидролиза. Полипептидная теория строения белка Э. Фишера получила подтверждение в современных работах. [c.341]

    Первичная структура белка—это число и последовательность аминокислотных остатков в полипептидной цепи. (Полнпептидную теорию строения белков прех,дожил не.мецкий химик Э. Фишер в начале XX в.). [c.648]

    Н.Д. Зелинский и B. . Садиков и почти одновременно Э. Абдергальден предложили в 1923 г. так называемую дикетопиперазиновую теорию строения белков. Она просуществовала почти четверть века, была популярной, однако далеко не единственной. Н. Трензегор (1923 г.) разработал другую теорию, которая также исходила из предположения, что аминокислоты не преформированы в белке, а возникают вторично, но на сей раз при гидролизе не дикетопиперазиновых циклов, а пирролидоновых и пир-роловых колец. Существование пиррольных структур в белковой молекуле он допускал, основываясь на их обнаружении в продуктах сухой перегонки белков и на присутствии пиррольных производных (пролина и гидроксипролина) в гидролизатах. П. Каррер (1923 г.) предполагал участие в построении белковых молекул имидазола и оксазола, а также дике- [c.62]

    Тем не менее есть некоторое сомнение в авторстве Мульдера на это слово — он воспользовался советом, данным ему великим шведским химиком Берцелиусом, без какой-либо особой признательности последнему [16]. Сам Мульдер был заинтересован в изучении альбуминовых веществ и предположил, что белки — это соединения фосфора и серы с органическим радикалом 40H62N10O12. Хотя Либих и другие вскоре привели доказательство, которое разрушило мульдеровскую теорию строения белков, никакие последующие попытки, которые предпринимались в течение многих лет, не привели к успеху в понимании структуры белков. [c.216]

    Большое сходство в химических и физических свойствах между синтетическими полипептидами Фишера и некоторыми белками (протеинами) оказало дальнейшую поддержку предположению, ранее выдвинутому Фишером и независимо от него Хофмейстером в 1902 г. о пептидном строении белков (протеинов). Эта теория предполагала, что молекула белка (протеина) построена только из цепей а-аминокислот (и позже, конечно, были включены а-ими-нокислоты), связанных друг с другом пептидными (амидными) связями между а-амино- и а-карбоксильными группами [см. формулу (1)].Сам Фишер учел, что возможны и другие способы соединения между аминокислотами в молекуле белка (протеина) и добавил к имеющимся сомнениям вопросы о размере и сложности природных белков, что вызвало в период 1920—1940 гг. различные предположения [3] об альтернативных способах связи между остатками аминокислот. Сэнджер [4] писал в 1952 г., что самым убедительным доводом в поддержку пептидной теории строения белков (протеинов) в действительности было то, что с 1902 г.— со времени ее возникновения, не были найдены опровергающие ее факты сам Сэнджер привел одно из первых убедительных доказательств этой теории, установив полную структуру белкового гормона инсулина. [c.218]

    В ходе проверки теории лротенна были резко расширены химические исс/1едо-вания бепков, и в этом приняли участие выдающиеся химики того времени Ю. Либих и Ж. Дюма. Ю. Либих, поддерживавший в принципе идею протеиновой единицы, уточнил формулу протеина pH- N, 0, , Ж. Дюма предложил свой вариант — С4вН,4К,зОи, однако Г. Мульдер отстаивал правильность составленной им 4 рмулы. Его поддерживал й. Берцелиус, изложивший теорию протеина в качестве единственной теории строения белка в знаменитом учебнике химии <1840 , что означало полное признание и торжество концепции Г. Мульдера. [c.25]

    Для формирования современных представлений о структуре белка существенное значение имели работы по расщеплению белковых веществ протеолитическими ферментами- Одним из первых их использует Г. Мейснер. В 1850 г. К. Леман предлагает называть пептонами продукты разложения белков пепсином. Изучая этот процесс, Ф. Хоппе-Зайлер и Ш. Вюрц в 70-х годах прошлого столетия пришли к важному выводу, что пептоны образуются в результате гидролиза белков ферментом. Они были весьма близки к правильному толкованию таких экспериментов с позиций структурной химии, но, к сожалению, последнего шага на пути к теории строения белка сделать не сумели. Очень близок к истине был и А. Я. Данилевский, который справедливо утверждал, что белки построены из аминокислот и имеют полимерную природу главной же структурной единицей он ошибочно считал биуретовую группировку RNH ONH OR  [c.26]

    В. последнее время ряд авторов за рубежом и у нас пыгается ревизовать энгельсовскую теорию строения белка как вещества-процесса. Для этих целей ими привлечено представление о том, что не белок является жизненным процессом, а нуклеиновая кислота или, в худшем [c.447]

    В 1930 г. Дж. Скотт Холдейн писал Полное историческое изложение энзимологии должно включать в себя рассмотрение ее взаимоотношений с чистой химией. Так, энзимология очень многим обязана теории строения белков Гофмейстера и установлению строепия сахаров, выполненному Фишером. С другой стороны, без применения энзимов в качестве реагентов триптофан вряд ли был бы открыт, мальтоза была бы редким веществом, и комплекс глюкозидов можно-было бы классифицировать только со значительным трудом [2]. [c.165]

    Основные научные работы относятся к химии высокомолекулярных соединений. В начале своей научной деятельности (до 1928) занимался химией ацетиленовых соединений, осуществил синтез по-лиацетнлена. Был сторонником выдвинутой Г. Штаудингером макромолекулярной теории строения полимеров и способствовал ее утверждению, доказав существование соединений присоединения к целлюлозе гидроксидов щелочных металлов, воды и кислот. С помощью рентгеноструктурного анализа изучал (1931) различные кристаллические модификации целлюлозы и продукты присоединения к ней, фибриллярные белки. Исследовал межмолекулярное взаимодействие в полимерах и его влияние на когезию. Осуществил синтез волокнообразующего полиамида поликонденсацией 11-аминоундекановой кислоты. Установил (1948) линейную зависимость между температурами плавления полиамидов и числом межмолекулярных водородных связей. Синтезировал заме--щенные полиамиды трехмерной структуры (благодаря наличию ди-сульфидных мостиков), а также замещенные целлюлозы, например аминоцеллюлозу. [c.562]

    В последние годы достигнуты большие успехи в изучении химической структуры белков. Была полностью подтверждена правильность полипептидной теории строения белка. Кроме пептидной связи, в молекулах белка были открыты дисульфидные и водородные связи, или мостики. Образование дисульфидной связи между аминокислотами происходит по типу образования цистина из молекул цистеина (стр. 204). [c.217]


Смотреть страницы где упоминается термин Белки теории строения: [c.170]    [c.180]    [c.291]    [c.63]    [c.24]    [c.31]    [c.441]    [c.422]    [c.7]    [c.53]    [c.163]    [c.257]    [c.587]   
Органическая химия (1956) -- [ c.390 ]




ПОИСК





Смотрите так же термины и статьи:

Белки пептидно-циклическая теория строения

Белки полипептидная теория строения

Белки строение

Белковые вещества Белки теории строения

Бергмана теория строения белковой молекулы

Дикетопиперазиновая теория строения белка

Косселя теория строения белковой молекулы

Развитие пептидной теории строения белка

Развитие учения о строении белка от теории протеина до пептидной теории

Теории циклического строения белка

Фишера Эмиля теория строении белковой молекулы



© 2025 chem21.info Реклама на сайте