Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикаты строение

    Свойства силикатов довольно разнообразны и зависят от их состава и строения. За исключением силикатов щелочных металлов, все они нерастворимы в воде. Последние обычно получают сплавлением кремнезема с карбонатами  [c.138]

    Е с и н О. А. и Гельд П. В. Структурные особенности стеклообразных и жидких силикатов. Строение стекла. Труды совещания по строению стекла. Изд-во АН СССР, 1955, стр. 44. [c.222]


    Основанная на теории МО зонная модель электронного строения металлов, полупроводников и диэлектриков может показаться не сразу очевидной всем студентам, но после ее обсуждения и объяснения она обычно усваивается. Последний раздел, посвященный силикатам, можно опустить без ущерба для усвоения важнейших понятий, но он дает хорошую возможность закрепить положение о связи между структурой и свойствами и обычно вызывает интерес у студентов. [c.577]

    Составьте таблицу пяти главных типов структур силикатов. Изобразите для каждого типа схему его строения и назовите для каждой структуры пример встречающегося в природе силикатного минерала. [c.567]

    СТРОЕНИЕ СТЕКЛООБРАЗНЫХ СИЛИКАТОВ [c.192]

    В основе теории строения силикатов — предположение [c.58]

    Коллоидно-химическую науку, однако, интересуют формы молекулярно связанной воды. Нами ранее [71—74] было показано, что следует выделять сорбционно (прочно) связанную воду, воду граничных слоев и осмотически связанную воду. Свойства и отличительные особенности указанных категорий молекулярно связанной воды удобно рассмотреть применительно к слоистым и слоисто-ленточным силикатам, которые обладают большой вариабельностью коллоидно-химических свойств в зависимости от особенностей строения, состава обменного комплекса, и в последнее время находят все возрастающее применение в качестве эффективных сорбентов, катализаторов, наполнителей полимерных сред, загустителей, пластификаторов, компонентов буровых растворов и т. д. [c.31]

    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]


    Таким образом, отечественная наука о силикатах с самого зарождения ее, со времен Ломоносова с громадным успехом занималась изучением химии силикатов, строением силикатов и реакциями, протекающими в силикатных системах. [c.6]

    Тот факт, что в основу определения органических соединений были положены углеводороды, выявляет еще и другой фундаментальный аспект проблемы, учитывавшейся также и старыми определениями, а именно сложность органических радикалов или, иначе говоря, решающую роль, которую играет строение в определении исключительного характера органических соединений. Несмотря на то, что и в неорганической химии (например, в химии силикатов) строение молекул и твердых фаз оказалось в последнее время очень важным для характеристики веществ и правильной интерпретации их свойств, в неорганической химии его значение далеко не так существенно, как в органической химии. Исключительный, особый характер органических соединений заключается именно во взаимоотношениях между различными атомами, образующими органические молекулы. Эти взаимоотношения определяются понятием строение. [c.14]

    Согласно трехслойной модели строения гидратной оболочки элементарных пластинчатых частиц слоистых силикатов [71, 72], граничный слой воды толщиной 8—10 нм состоит из двух частей более прочно связанного адсорбционного и анизотропно-доменного слоев. Авторы [120] также выделили непосредственно прилегающую и более прочно связанную с гидрофильной поверхностью часть граничного слоя (по нашей терминологии—адсорбционно связанную воду), состояние которой менее чувствительно к изменениям концентрации электролита. В работе [121] для описания изменения структурной составляющей расклинивающего давления в системе мусковит — связанная вода использована двойная экспонента Пз = Д ехр (—h/l) + + /(оехр(—Н/1о) со значениями / = 0,95ч-1,1 нм и /о = 0,17-ь - 0,30 нм. Толщина внутренней части граничного слоя для мусковита составляет 1 нм [121], что совпадает с толщиной адсорбционно связанного слоя воды в трехслойной модели гидратной оболочки пластинчатых частиц слоистых силикатов [71]. [c.41]

    Широкое и быстрое распространение природных и синтетических цеолитов в промышленности заставило подробно исследовать их структуру. В частности, изучение силикатов показало, что группы 510 с тетраэдрической структурой могут объединяться между собой при помощи атомов кислорода, расположенных по углам тетраэдра так, что получаются макромолекулярные ионы или макромолекулы с самым различным строением двухмерным (тетраэдры с тремя общими углами), трехмерным (тетраэдры с четырьмя общими углами) и т. д. Таким образом, образуется много различных структур, например, линейные (волокнистые силикаты), двухмерные (слоистые силикаты) и трехмерные (полевые шпаты и цеолиты) макромолекулярные ионы. Среди них есть силикаты с кристаллическими решетками, имеющими пустоты в виде каналов или слоев. [c.83]

    Свойства силикатов зависят от их состава, строения кристаллической решетки, природы сил, действующих между ионами, [c.304]

    Для описания структуры граничных слоев воды была предложена [71] модель анизотропных доменов, размеры которых вдоль осей а ъ Ь (вдоль плоских поверхностей частиц слоистых силикатов) существенно больше, чем вдоль оси с (перпендикулярно поверхности пластинчатых частиц). Такое строение граничных слоев позволяет объяснить, с одной стороны, их повышенную вязкость (при приложении внешней нагрузки текут не индивидуальные молекулы, а домены), а с другой,— меньшее число водородных связей, в которых участвует каждая молекула воды (этот вывод, естественно, вытекает из анизотропной структуры ассоциатов). [c.40]

    Асбест — группа минералов, имеющих волокнистое строение [95,97]. По химическому составу асбестовые минералы представляют собой различные водные силикаты магния, железа, кальция и натрия. [c.135]

    В соответствии с новейшими данными переработке подверглись разделы по химии кремния и его соединений, фазовым диаграммам состояния, строению стеклообразных силикатов, фазовому [c.3]

    Большое развитие получило учение о скоростях химических реакций, т. е. химическая кинетика, связываемая теперь конкретно с исследованиями строения молекул и прочности связей между атомами в молекуле. Возникли и успешно развиваются новые разделы физической химии магнетохимия, радиационная химия, физическая химия высокополимеров, физическая химия силикатов, газовая электрохимия и др. [c.8]

    Тот факт, что несмотря на многообразие спектров силикатов, обладающих различным строением и составом, все они имеют резкие полосы селективного отражения (поглощения) в области 8—12 и 17—20 мкм, позволяет объяснить спектры исходя из свойств только кремнекислбродных групп. [c.158]

    Ионно-координационная гипотеза А. А. Аппена основана на ионных представлениях о строении силикатных стекол. Автор исходит из сравнения физико-химических свойств силикатов в кристаллическом и стеклообразном состояниях. Для кристаллических силикатов, как и для других ионных соединений, характерно наличие координационной решетки, в которой каждый катион симметрично окружен анионами, а структура в целом слагается из координационных полиэдров. При недостатке кислорода силикаты об- [c.199]


    Удаление этих цементирующих атомов из цепочечных или слоистых структур, например при выветривании в природных условиях или при выщелачивании кислотой, разъединяет цепочки и слои, и силикаты или алюмосиликаты, имеющие строение такого тина, распадаются на микроскопические обломки, которые могут [c.61]

    Опишите их строение, имея в виду, что они изотипны соответствующим силикатам. [c.87]

    Образование твердых растворов и изоморфных смесей. Явления изоморфизма давно известны и являются важной характеристикой многих элементов и их соединений. Изоморфизм способствует выделению с.мешан-ных кристаллов, когда две различные по составу соли, наиример алюминиевые и железные квасцы, образуют общую кристаллическую решетку. Известно, что Д. И. Менделеев считал изоморфизм одной из важных характеристик элементов. Такие кристаллы образуют не только вещества, имеющие близкую ио строению кристаллическую решетку. В более широком смысле такие системы называют твердыми растворами. Хорошо известны твердые растворы разнообразных металлических сплавов, силикатов, соленых систем и т. д. В ряде случаев соосаждение также обусловлено образованием твердых растворов. [c.63]

    Строение и свойства силикатов в различных состояниях тесно взаимосвязаны между собой, и правильное представление о строении силикатов в том или другом состоянии невозможно без сопоставления их структур. [c.149]

    СТРОЕНИЕ КРИСТАЛЛИЧЕСКИХ СИЛИКАТОВ [c.177]

    Жидкость Бернала — имеет структуру того кристалла, из которого она образовалась при плавлении. Переход кристаллов в жидкость происходит без разрыва связей, в результате постепенного преодоления сил сцепления. Жидкость лишена дефектов , разрывов и дырок . Она обнаруживает лишь незначительные отклонения от геометрии кристалла, из которого образовалась. Вблизи точки плавления обладает большой вязкостью. При переохлаждении легко образует стекла. К данному типу жидкости относятся многие расплавы силикатов и большинство стеклообразующих силикатных расплавов. Это свидетельствует о том, что аналогия в строении расплавленных и кристаллических силикатов очень велика. [c.183]

    СТРОЕНИЕ СИЛИКАТОВ В ЖИДКОМ СОСТОЯНИИ [c.184]

    Строение силикатных расплавов изучено меньше, чем структура кристаллических силикатов и твердых силикатных стекол, так как этому вопросу уделялось мало внимания. [c.184]

    Бобкова И. М. О строении однофазных стекол.— В сб. VI Всесоюзное совещание по стеклообразному состоянию и семинары по стеклу Института химии силикатов АН СССР. Л., 1975, с. 18—20. [c.251]

    Формула Ыа2510з условна, так как образующиеся силикаты натрия имеют различный состав и строение в зависимости от условий проведения реакции  [c.372]

    Силикаты — солеобразные химические соединения, содержащие кремнийкислородные кислотные остатки различного состава (81 0т). Они часто имеют очень сложное строение. Основа всех силикатов — кремнийкислородный тетраэдр [8104], в центре которого расположен атом кремния, а в вершинах — атомы кис. аорода. Тетраэдры [8104] могут сочленяться через вершину, ребро или грань. Число таких сочетаний и пространственное расположение определяет структурный мотив силиката. Во всех случаях атомы кремния связаны друг с другом через атомы кислорода цепочки —81—О—81 — очень прочны. [c.138]

    Основу слоистого строения глинистых минералов составляют кремиекислородные тетраэдрические и алюмогидроксидные октаэдрические сетки, неограниченно развитые в плоскости. Тетраэдрические сетки состоят из тетраэдров, связанных между собой через вершины своих оснований. Четыре вершины тетраэдра (5104] заняты аиионамн О , а в центре его находится более мелкий катнон. Расстояния 81—О в тетраэдрах меняются в зависимости от структурного типа силиката в пределах (1,55— 1.72)-10 см. В слоистых силикатах средние расстояния —О в пределах одного тетраэдра равны 1,62-10" см. Центральная по.зи-ция в тетраэдрах иногда частично изоморфно замещается на А - +. При этом в слоистом силикате расстояние А1—О уже составляет в среднем 1,77-10 см. Сопоставление этих расстояний с суммой ковалентных радиусов З н О, а также А1 и О свидетельствует о преимущественно ковалентном характере связей в тетраэдрах. [c.14]

    Простые вещества. Зависимость строения и свойств просты.х веществ от иоложения алементов в периодической системе. Получение простых веществ. Сложные вещества. Бинарные соединения. Двухэлементные соединения. Зависимость устойчивости и свойств двухэлементных соединений от атомного номера элемента с положительной степенью окисления. Неорганические полимеры с тетраэдрическими связями. Трехэлементные соединения. Их строение, свойства. Смешанные соединепия. Твердые расгвор1л. Эвтектические смеси. Оксосоединения /i-элементов. Силикат(.1, Алюмосиликаты. [c.181]

    Силикатами слоистого строения являются тальк Mg3(OH)2 [SiiOm] и каолинит (основа глин) AlsfOH) (SisOs]. Минералы каолинит, тальк очень мягкие, легко расслаиваются на чешуйки. Тальк, например, применяется в качестве смазки. Чем обусловлены эти свойства минералов  [c.216]

    В Германии сырьем для этого процесса служила фракция синтетического дизельного топлива (гл. 3, стр. 63), кипящая в пределах 220—330°. Она состояла из парафиновых С — ig-углеводородов нормального строения с небольшой примесью олефинов. Эту фракцию гидрировали, с тем чтобы все олефины перевести в парафины, и затем смесь углеводородов обрабатывали при обычных температуре и давлении двуокисью серы и хлором, подвергая их одновременно действию ультрафиолетовых лучей. Чтобы подавить реакцию хлорирования, уменьшить образование дисульфохлоридов, а также чтобы получить продукты, в которых группа SOg l располагалась бы как можно ближе к концу углеродной цепи, процесс проводили при степени превращения не более 50—70%. Расход электроэнергии был очень низким — около 0,0022 кет на 1 кг продукта. Моносульфохлорид ( мер-золь ) отделяли от непрореагировавшего углеводорода, который возвращали обратно в процесс. Моносульфохлорид обрабатывали затем раствором едкого натра и получали натриевую соль алкилсульфокислоты ( мерзолят ), В производстве стиральных порошков мерзолят смешивали с силикатом натрия или с натрийкарбоксиметилцеллюлозой. [c.98]

    Получение и исследование активного кремнезема. Из кристаллохимии известно, что в строении некоторых силикатов имеется одномерный, а в строении других — двухмерный или трехмерный кремнекислородный остов. Алюмокремнекислородный остов имеется в структуре алюмосиликатов, борокислородный — в структуре боросиликатов и т. д. Как подчеркивал А. Е. Ферсман, кислород определяет судьбу устойчивости силикатных построек, и в гораздо меньшей степени играют роль катионы . Последние можно удалить или заместить, в то время как кремнекислородный скелет не изменяется. [c.61]

    Большой интерес представляет процесс выщелачивания кислотой змеевика — водного силиката магния [51205 (МдОН) г]- Mg(0H)2, в котором в природных условиях часть магния замещена некоторыми другими, подходящими в кристаллохимическом отношении элементами. В строении слоистой разновидности змеевика — антигорита имеется двухмерный каркас, построенный из сдвоенных кремнекислородных сеток, несущих на себе катионы и молекулы воды. При обработке антигорита кислотой катионы удаляются с раствором солей, выделяется свободный кремнеземный остов минерала  [c.63]

    Остов оксидов металлов. Обменное взаимодействие анионов играет структуроформирующую роль не только в строении гало-генидов, но и многих других неорганических веществ. Это относится, например, к таким важным классам вещества, как твердые оксиды, сульфиды, вообще халькогениды, а также силикаты, алюмосиликаты и др. Остов оксидов образуется благодаря обменному взаимодействию оксоионов. При этом он определяет тип их структуры, природу соединений. Это видно на примере довольно странных на первый взгляд соединений вроде СаТ10з —не то солей, не то оксидов. В составе соединений такого рода находится два (или больше) вида катионов, размещающихся в соответствии с их размерами в октаэдрических или тетраэдрических пустотах кислород- [c.75]

    Касаясь природы кремнезема, глинозема, двуокиси марганца, двуокиси свинца и их водных соединений, Д. И. Менделеев отмечал, что все эти соединения, так же как и простые тела, образуемые углеродом, имеют высокомолекулярное строение. Например, в безводном кремнеземе находится не Si02, а сложная частица (5102)п, т. е. строение кремнезема полимерное, сложное. Столь же сложно строение водного соединения кремнезема и силикатов. Важно отметить, что в структуре последних Д. И. Менделеев различал неизменную часть строения (каркас) и другую часть строения, которая может изменяться и замещаться. [c.168]

    Некоторые неорганические вещества имеют также полимерное строение, например аморфный 5102, природные и синтетические силикаты и алюмосиликаты общей формулы хЭгОз-уЗЮг-гНгО, где Э Na, А1, Mg и др. По типу полимеров построены и силикатные стекла, основной составной частью которых является 8102, а также цемент н бетон. [c.380]

    Приводятся сведения по кремнию и его соединениям. Описываются современное состояние системы кремнезема диаграммы состояния важнейших силикатных систем принципы фазового анализа систем и основ1.1 количественного расчета фаз теоретические представления о строении стекол, расплавов п кристаллических силикатов методы изучения структуры силикатов ))еакции в смесях твердых веществ термодинамика силикатов и основы термодинамических расчетов. [c.2]

    Экспериментальное изучение структуры силикатов связано с определенными трудностями, обусловленными сложным строением их кристаллических решеток, значительными искажениями решеток при образовании широко распространенных твердых растворов в силикатах, сложным составом силикатов, многофазностью и неоднородностью структуры силикатных материалов и рядом других факторов. Кроме того, достоверные сведения о строении и свойствах силикатов можно получить лишь на основе комплексного исследования с одновременным использованием нескольких методов изучения структуры, так как каждый из существующих ме- [c.149]

    При введении в состав расплава катионов первой группы отношение О 81 постепенно увеличивается, а связи 51—О—81 заменяются на 51—О—Ме (здесь Ме — металл). В этом случае пространственные комплексы все более и более дробятся. Все большее количество анионов кислорода оказывается необобщеиным, принадлежащим только одному тетраэдру. Образующиеся кремнекислородные комплексы напоминают кремнекислородные группировки в решетках кристаллических силикатов, имеющих ту же величину отношения О 81. Это могут быть слои, ленты, цепочки, кольца и отдельные тетраэдры [5104]. При содержании 0,10 молярной доли МегО или 0,20—МеО в значительной мере деформированная сетка из 5102 распадается на отдельные куски. Когда отношение О 51 достигает величины порядка 2,5, в расплаве превалируют комплексные анионы [51205] , которые образуют слои. При дальнейшем введении оксида металла возникают одномерные цепочки [810з]1 , в которых отношение О 81 равно 3. В присутствии комплексообразующих катионов А13+, В , Р + состав и строение комплексов усложняются. Полимеризованные кремнекислородные анионы в расплавах в той или иной степени отражают структуры твердых силикатов. [c.186]


Библиография для Силикаты строение: [c.274]   
Смотреть страницы где упоминается термин Силикаты строение: [c.372]    [c.379]    [c.214]    [c.221]    [c.242]    [c.180]    [c.180]   
Введение в химию окружающей среды (1999) -- [ c.76 ]

Основы общей химии Том 2 (1967) -- [ c.102 , c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Силикаты



© 2024 chem21.info Реклама на сайте