Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Случайное распределение генов

    Хороший пример подобной дифференциации представляют некоторые виды наземных моллюсков, населяющих долины на Гавайских островах. Эти долины расходятся радиально с вулканических вершин и резко отделены друг от друга. Оказалось, что в каждой долине обитает свой особый тип моллюсков, который можно отличить по некоторым определенным признакам от форм, обитающих в других долинах. Так как условия местообитания и климата во всех долинах практически одинаковы, то дифференцировка популяции моллюсков на разные расы в этом случае не представляет какой-либо наследственной адаптации. Эту дифференцировку следует рассматривать как результат так называемого дрейфа генов, т. е. случайного распределения генов. [c.123]


    Было высказано предположение, что различия в частоте групп крови представляют собой следствие случайного распределения генов ( дрейфа генов , см. гл. XII) однако после того, как было обнаружено, что гены, определяющие группы крови, оказывают плейотропное действие на различные органы, стали считать, что различия в частоте групп крови скорее отражают приспособленность к разным условиям внешней среды и к разной генотипической среде. Основанием для подобного вывода служит то обстоятельство, что люди с некоторыми группами крови более других подвержены определенным заболеваниям. Так, люди, с группой крови А (система А, В, 0) склонны к заболеванию раком желудка, тогда как принадлежащие к группе О легче других заболевают язвой двенадцатиперстной кишки. Различия в группах крови связаны также с различиями в жизнеспособности, причем характер этого влияния у мужчин и женщин разный. Сходное влияние оказывают различия в группах крови и на способность к деторождению. [c.439]

    Один вид пересортировки - это результат случайного распределения разных материнских и отцовских гомологов между дочерними клетками при 1-м делении мейоза каждая гамета получает свою, отличную от других выборку материнских и отцовских хромосом (рис. 15-9 А). Из одного только этого факта следует, что клетки любой особи могут в принципе образовать 2" генетически различающихся гамет, где п-гаплоидное число хромосом. Нанример, у человека каждый индивидуум способен образовать по меньшей мере 2 = 8,4-10 генетически различных гамет. Однако на самом деле число возможных гамет неизмеримо больше из-за кроссинговера (перекреста) - процесса, происходящего во время длительной профазы 1-го деления мейоза, когда гомологичные хромосомы обмениваются участками. У человека в каждой паре гомологичных хромосом кроссинговер происходит в среднем в двух-трех точках. Как показано на рис. 15-9 Б, такой процесс перетасовывает гены любой хромосомы в гаметах. [c.17]

    Отклонения от случайности могут быть в том случае, если частота мутаций одних кодонов выше, чем других, или если некоторые кодоны проявляют более выраженную или менее выраженную тенденцию к мутационному превращению, чем соседние с ними. Распределение известных мутаций в генах НЬ а и НЬ показано на рис. 5.24 [119]. Небольшое отклонение от случайности для генов НЬ а можно объяснить с помощью правдоподобного предположения о том, что определенные сайты столь важны для функции, что мутации в них несовместимы с жизнью и потому не будут выявляться и учитываться в соответствующих исследованиях. [c.188]

    Обычно небольшую миграцию между соседними популяциями или случайное расселение особей на большие расстояния исключить невозможно, особенно если речь идет о животных. Поскольку дифференциация популяций так чувствительна даже к незначительной миграции, на сходстве генных частот нельзя строить никаких убедительных доказательств. Однако виды, а также некоторые подвиды и зарождающиеся виды генетически полностью изолированы друг от друга, так что сравнение распределений генных частот между такими репродуктивно изолированными группами может быть весьма показательным. [c.221]


    Наличие в геноме всего лишь нескольких типов гамет в равновесии проявляется в резком увеличении приспособленности по сравнению с предсказанием, основанным на независимом распределении генов. Если каждый из 36 локусов имеет 10%-ный гетерозис, то приспособленность равновесной популяции, в которой все локусы распределяются случайно, равна только (0,95)2 =0,158. Фактическая приспособленность популяции, в которой 85 7о гамет относятся к двум комплементарным классам, составляет около 0,40, так как одна треть зигот, образуясь в результате слияния двух комплементарных, гамет, гетерозиготна по каждому локусу. [c.309]

    Распределение сайтов узнавания фермента носит случайный характер по отношению к геному в целом. Поэтому обработка эукариотической ДНК рестриктазами приводит к образованию множества фрагментов. При электрофорезе в геле эти фрагменты образуют пятно, в котором неразличимы отдельные полосы (за исключением ряда полос, соответствующих некоторым повторяющимся последовательностям, рассмотренным в гл. 24). [c.243]

    ДНК. Любой специфический сайт-мишень разрезается соверщенно случайно, поэтому присутствие сайта-мишени в некоторой последовательности не обязательно приведет к ее разрыву. Малая вероятность разрезания по каждому сайту в сочетании с частым расположением сайтов означает, что распределение фрагментов обеспечивается практически полностью случайным характером внесения разрывов в геном. При этом каждый фрагмент заканчивается одной и той же последовательностью, которая может иметь липкий конец и поэтому удобна для клонирования. [c.244]

    В интерфазных хромосомах хроматиновые волокна организованы в домены или петли, состоящие из 30000—100000 пар оснований и заякоренные на внутриядерном поддерживающем матриксе. Распределение участков генома в рамках доменной структуры хроматина, вероятно, не является случайным. Можно предположить, что каждый петлеобразующий домен хроматина содержит как кодирующие, так и некодирующие области генов, соответствующих определенной генетической функции. [c.66]

    Клональные изменения в фенотипе реассортантов, имеющих одинаковое распределение родительских генов, указывают на значительное влияние случайных мутаций. [c.310]

    Штриховая кривая соответствует теоретически ожидаемому распределению при случайном скрещивании и отсутствии отбора. Сплошная линия аппроксимирует реально наблюдаемое распределение. Жесткий отбор — это процесс элиминации летальных и субвитальных гомозиготных генотипов. Возможен также прямой отбор гетерозигот либо вследствие их превосходства, либо вследствие их большей способности к выживанию в изменчиво среде. Наблюдаемый избыток гетерозигот может быть также обусловлен потоком генов и случайным дрейфом. Генотипы, гомозиготные по летальным аллелям, образуют генетический груз более высококачественные (в смысле приспособленности) генотипы получили название генетической элиты . Промежуточные генотипы составляют генетическую [c.257]

    Если мы начнем с равномерного (случайного) пространственного распределения четырех видов генов, то достигаемое некоторое время спустя стационарное состояние представляет собой пятнистое распределение (рис. 9.4а и фото 8) одни и те же виды могут быть в избытке или в недостатке в различных областях. Наконец, изучим генетический дрейф в малых изолированных популяциях. С этой целью мы разделим экран на большое количество квадратов это достигается вычерчиванием решетки в плоскости I и созданием правила для плоскости О, интерпретирующего эту решетку как барьер для передачи генов (так как для генов остается доступной только плоскость [c.91]

    Сцепление и ассоциация. Иногда предполагают, что сцепленные гены в популяции должны ассоциировать, т.е. хромосомные комбинации АВ и аЪ (притяжение) должны обнаруживаться чаще, чем комбинации АЬ и аВ (отталкивание). Однако для популяции со случайным скрещиванием это не так. Даже при тесном сцеплении повторяющийся во многих поколениях кроссинговер будет приводить к равномерному распределению в популяции всех четырех комбинаций АВ, аЪ, АЬ, аВ. Как правило, ассоциация генетических признаков не указывает на сцепление, а вызвана другими причинами. [c.192]

    Полиморфизм ДНК и картирование. В последние годы выявляется все больше случаев полиморфизма ДНК по сайтам рестрикции (разд. 2.3.2.7, 6.1.2). Это обстоятельство раскрыло новые дополнительные возможности картирования генома человека. Установление тесного сцепления с рестрикционным маркером ДНК позволило локализовать гены многих важных наследственных болезней в конкретных хромосомных сегментах. На рис. 3.24, А представлена большая родословная с хореей Гентингтона. ДНК-маркер и, следовательно, ген хореи расположены на хромосоме 4. Модельные расчеты [584 754 887] показали, что для картирования всего генома необходимо лишь несколько сотен рестрикционных маркеров ДНК, случайным образом распределенных по геному человека. Для целей медико-генетического консультирования и пренатальной диагностики (разд. 9.1) достаточен по крайней мере один маркер, тесно сцепленный с геном данного наследственного заболевания. [c.202]

    Кумулятивные эффекты, или эффекты накопления изменений в процессе случайного дрейфа генов, изображены на рис. 23.8. На нем представлены результаты эксперимента, произведенного Питером Бьюри с использованием 107 различных популяций, в каждой из которых на протяжении нескольких поколений отбиралось наугад по 8 самцов и 8 самок из потомства предыдущего поколения, так что эффективная численность популяции составляла примерно 16 особей, или 32 гена. Исходная частота двух исследовавшихся аллелей, bw и bw , равнялась 0,5 (все особи в нулевом поколении были гетерозиготны по этим двум аллелям). В первом поколении частоты аллелей распределялись вокруг среднего значения, равного 0,5, однако уже в первом поколении распределение было довольно широким. Частоты, полученные в первом поколении, были исходными для второго поколения и т.д. Фиксация аллеля впервые произошла в одной из популяций в четвертом поколении (частота аллеля bw в этой популяции достигла 1). Число популяций с фиксированными аллелями постепенно росло на протяжении 19 поколений, после чего эксперимент был прекращен. В 19-м поколении в 30 популяциях был фиксирован аллель few и в 28 популяциях-аллель bw . Если бы эксперимент продолжался дольше, то в конце концов аллели были бы фиксированы во всех популяциях, причем для обоих аллелей число популяций было бы примерно равным. [c.128]


    Необходимо, однако, указать, что регистрация и классификация мутаций у человека никогда не была систематической. Критерии распознавания Х-сцепленных мутаций отличаются от таковых для аутосомных и в особенности для аутосомно-рецессивных мутаций. Смещение подобного рода могло привести к ложным различиям между Х-хромосомой и аутосомами. Тем не менее реальная кластеризация генов с родственными функциями весьма возможна. У дрозофилы, для которой регистрация мутаций является намного более полной, описаны значимые отклонения от случайного распределения мутаций, поражающих различные системы органов [648]. Если при более детальном анализе различие между Х-хромосомой и аутосомами у человека окажется реальным, то уместны следующие вопросы. Связано ли это различие с какими-либо особыми свойствами Х-сцепленных генов в отношении регуляции генного действия Снижают ли эти гены риск возникновения рецессивных леталей вследствие мутаций и является ли это важным селективным преимуществом в ситуации, когда каждый второй индивид-это гемизиготный мужчина, который может быть элиминирован действием рецессивной летали Или, кластеризация является лишь простым отражением эволюционной истории этих генов  [c.226]

    Распространение аллелей АВО в мировом населении. Распределение аллелей А, В и О (рис. 6.27-6.29) 144 свидетельствует о наличии естественного отбора по данной системе. Если бы отбора не было, а распределение отражало только случайные колебания генных частот, то в популяции присутствовали бы все комбинации генных частот, возможные в системе из трех аллелей. В действительности дело обстоит по-другому наблюдается только небольшое число из возможных комбинаций [1732]. [c.328]

    При случайном сочетании в результате самоонылеыня восьми типов яйцеклеток с восемью типами спермиев в р2 получится 64 комбинации зигот. По фенотипу особи Fo могут быть разделены на восемь различных групп в отношении 27 (Л—В—С) 9 [А—В—с) 9 [А—Ь- С] 9 а—В—С) 3 А—Ь—с) 3 [а—В—с) 3 [а—Ъ— —С) 1 а—Ь—с). Расщепление по фенотипу в отношении 27 9 9 9 3 3 3 1 является закономерным следствием независимого распределения генов при тригибридном скрещивании. [c.74]

    Числовые отпошеиня, установленные Г, Менделем при образовании гамет, и распределение классов по фенотипу и генотипу являются следствием случайного распределения равновероятных сочетаний. Соединение гамет с различными генами во время оплодотворения происходит совершепио случайно и подчиняется З ако-иам теории вероятностей. Поэтому чем больше гибридных особей, тем сильнее фактически полученные данные будут приближаться, к теоретически ожидаемым. [c.75]

    Этот подход избавляет нас от необходимости выделять специфический мутант, поскольку он подразумевает использование бактериальных генов, которые дают селективные преимущества при их экспрессии в клетках млекопитающих [28]. Для этого конструируют плазмидные и ретровирусные векторы, в которых бактериальные гены сочетаются с промоторами, местами сплайсинга и сигналами полиаденилирования млекопитающих. Введение бактериальных генов в клетки млекопитающих с по--мощью трансфекции или инфекции приводит к их случайному распределению в геноме реципиента. В качестве примера бактериальных генов, способных обеспечивать селективные преимущества клеток млекопитающих, можно назвать ген Е. oli gpt (он позволяет клеткам-реципиентам утилизировать ксантин в качестве предшественника для биосинтеза пуринов) и генлео (он обусловливает устойчивость клеток млекопитающих к антибиотику G418) [29]. Основной недостаток этого метода — случайное распределение сайтов интеграции однако последние исследования позволяют надеяться, что с помощью гомологичной рекомбинации удастся осуществлять направленную интеграцию. [c.12]

    При случайном распределении нуклеотидов в ДНК участки, состоящие из п определенных нуклеотидов, встречаются в среднем через 4" нуклеотидных остатков. Ппэтому число саи.эв узнавания, приходящихся на один геном или ген известной длины, в какой-то степени можно прогнозировать. Более точный прогноз можно сделать, оценив в сайте узнавания и в изучаемой ДНК содержание АТ и G -nap. [c.166]

    Для прометафазы характерна чрезвычайно высокая активность веретена, которое как бы стремится захватить все хромосомы и расположить их в виде метафазной пластинки. И действительно, хромосомы энергично вращаются и движутся туда и сюда между полюсами, так как их кинетохоры присоединены к мнкротрубочкам, растущим от одного и от другого полюса веретена, и эти микротрубочки тянут их в разные стороны. Первоначальное прикрепление хромосомы обычно происходит тогда, когда она находится у одного из полюсов, и в это время микротрубочки присоединяются только к одному кинетохору в конце концов и второй кинетохор связывается с микротрубочками, растущими уже от другого полюса. Эти беспорядочные движения хромосом в прометафазе и их окончательная случайная ориентация обеспечивают случайное распределение хроматид между дочерними клетками, что очень важно для перекомбинирования генов во время аналогичного деления ядра в мейозе (разд. 15.2.7). [c.448]

    В настоящее время эта схема возникновения мутаций исследуется на основе двух программ. Первая из них анализирует характер распределения кластера мутаций на основе сравнения предполагаемых донорных и акцепторных последовательностей с использованием метода статвесов. Статвес для группы мутаций (см.рис.6) вычисляется следупцим образом W-L2-LI, где L2 и LI - правая и левая границы расположения кластера в полинуклеотидной последовательности. Результаты, полученные на основе этой программы, показаны на рисунке 6, где приведен пример выявления генной конверсии между геном и псевдогеном цыпленка. Анализ показал, что вероятность наблюдать такой кластер мутаций по случайным причинам - реал случ что явно свидетельствует в пользу генной конверсии, как возможного механизма возникновения мутаций в этой последовательности. Вторая программа выявляет наличие [c.98]

    При исследовании модели репарационной коррекции было показано, что в II из 14 У-генов значение Р( реад " случ меньше 0.2Б. Вероятность такого события по случайным причинам в соответствии с критерием биномиального распределения равна 3.7 ip . Столь низкое значение вероятности является весолш аргументом в пользу этого механизма возникновения соматических мутаций. Однако, анализ индивидуальных мутаций показал, что этот механизм не объясняет возникновение всех наблюдаемых в этих генах соматических мутаций (141. [c.101]

    ДНК — это тот материал, из которого состоят гены. Нить ДНК состоит из большого количества молекул дезоксирибозы, линейно связанных фос-фодиэфирными связями в 3 - и 5 -положениях молекулы сахара. Каждая молекула дезоксирибозы связана в положении Г с пурином или пиримидином. Таким образом, полинуклеотидная цепь представляет собой длинный остов, состоящий из остатков сахара и фосфатных групп, соединенных с пуриновыми основаниями — аденином (А) и гуанином (Г) и пиримидиновыми основаниями — цитозином (Ц) и тимином (Т), расположенными вдоль основной оси молекулы через строго определенные интервалы. Однако нить ДНК представляет собой не одинарную цепь, а двойную, в которой расстояние между осями цепей всегда поддерживается постоянным благодаря тому, что А из одной цепи всегда связывается только с Т из другой цепи, а Г — с Ц. Эти взаимодействия определяются размерами и формами оснований, составляющих каждую пару оснований. Возникающие при этом водородные связи определяют структурную стабильность ДНК- Однако в соответствии со знаменитой моделью Уотсона — Крика эти две цепи ДНК не просто тянутся вдоль друг друга, подобно железнодорожным рельсам, а закручены относительно друг друга, образуя периодическую двойную спираль пары оснований при этом располагаются в плоскости, перпендикулярной оси спирали. Случайный характер распределения четырех оснований вдоль цепи ДНК мог бы привести к возникновению астрономически боль- [c.69]

    В серии сложных опытов фон Борстель [202, 203] изучал время гибели яиц, отложенных девственными самками наездника Вгасоп, гетерозиготными по хромосомным транслокациям. Эти самки откладывали нормально гаплоидные яйца. В процессе мейоза конъюгация хромосом, гетерозиготных по транслокациям, приводит к неравномерному распределению хроматина между мейоти-ческими ядрами. Вследствие этого примерно половина гамет имеет ядра с нехваткой части хромосомного плеча, и половина яиц от такой самки гибнет в результате отсутствия определенных блоков генов. При исследовании 27 различных транслокаций, характерных для случайного отбора проб утраченных блоков генов предположительно из разных частей хромосом, зародыши всегда гибли примерно на середине развития, когда они содержали до 50 тыс. ядер, и уже после того, как происходила эмбриональная дифференциация. Это указывает на то, что начальное развитие зародыша не зависит от наличия всех генов и что гаплоидный зародыш насекомого, образовавшийся из одного ядра с нехваткой довольно значительного блока генов, может дифференцироваться до довольно далекой стадии. Хадорн [80] также изучал фазы развития, когда сказывается влияние летальных мутаций. [c.122]

    Интересно определить, возникают ли разрывы по длине хромосомы случайно или некоторые точки хромосом особенно подвержены разрывам. У Drosophila melanogasier расположение разрывов можно определить с большой точностью, изучая хромосомы слюнных желез. Но при этом следует учитывать лишь те разрывы, которые принимают участие в образовании жизнеспособных типов хромосомных перестроек (инверсии и симметричные обмены). В первую очередь следует рассмотреть вопрос о распределении разрывов между эухроматином и гетерохроматином. Участки хромосом, расположенные близ центромеров проксимальные гетерохроматиновые районы) отличаются от остальной массы хромосом тем, что они генетически инертны, т. е. содержат мало генов (или по крайней мере мало таких генов, которые могут быть обнаружены по резкому альтернативному эффекту, производимому их разными аллеломорфами). Эти районы отличаются и цитологически, благодаря их иной окрашиваемости во время митоза и мейоза. Считают, что это связано с различным содержанием нуклеиновой кислоты или сдвигом ее цикла во времени. Гетерохроматиновые районы занимают значительную часть длины хромосом в митозе или мейозе (так, например, одну треть Х-хромосомы), но лишь очень маленькую часть длины хромосом слюнных желез. Было обнаружено, что частота возникновения разрывов в эухроматиновых и гетерохроматиновых районах пропорциональна относительной длине этих районов в митотических хромосомах, но не их относительной длине в хромосомах слюнных желез. Поданным Кауфмана (1939), около 28% всех разрывов в Х-хромосоме возникает в проксимальном гетерохроматиновом районе , который занимает /3 длины митотической хромосомы. [c.167]

    Во время мейоза в результате случайного рас-хожцения хромосом (независимое распределение) и обмена генетическим материалом между гомологичными хромосомами (кроссинговер) возникают новые комбинации генов, попавших в одну гамету такая перетасовка повышает генетическое разнообразие (см. разд. 23.4). Это объединение в зиготе двух наборов хромосом (генетическая рекомбинация), по одному от каждого из родителей, представляет собой генетическую основу внутривидовой изменчивости. Зигота растет и развивается в зрелый организм следующего поколения. [c.55]

    Генная мутация может привести к тому, что в определенном локусе окажется несколько аллелей. Это увеличивает гетерозиготность данной популяции, делает более разнообразным ее генофонд и ведет к усилению внутрипопуляционной изменчивости. Перетасовка генов как результат кроссинговера, независимого распределения, случайного оплодотворения и мутаций может повысить непрерывную изменчивость, но ее эволюционная роль часто оказывается преходящей, так как возникающие при этом изменения могут быстро сгладиться. Что же касается генных мутаций, то некоторые из них увеличивают дискретную изменчивость, и это может оказать на популяцию более глубокое влияние. Большинство генных мутаций рецессивны по отношению к нормальному аллелю, который успешно вы- [c.213]

    Распределение G-островков можно легко объяснить как побочный эффект развития системы метилирования G, предназначенный для снижения экспрессии неактивных генов у позвоночных (рис. 10-47). В половых клетках все тканеспецифичные гены (за исключением тех, которые присущи яйцеклетке и спермию) неактивны и метилированы. За долгую эволюцию их метилированные G были утеряны при случайном дезаминировании. Однако G-последовательности в промоторных областях генов, активных в половых клетках (включая все гены домашнего хозяйства ), оставались деметилированными и при спонтанном дезаминировании всегда репарировались. Полагают, что эти гены узнаются сайт-специфическими ДПК-связывающими белками, которые присутствуют в половых клетках и удаляют любые метильные группы в области промоторов генов домашнего хозяйства . Эксперименты с клонированными генами показывают, что лишь G, входящие в состав G-островков, остаются неметилированными, если в яйцеклетку мыши инъецировать совершенно неметилированную ДПК. [c.219]

    Х-сцепленных рецессивных болезней. Если инактивация происходит достаточно рано во время эмбрионального развития-в то время, когда количество клеток данной ткани еще довольно невелико,-то и в этом случае должны иногда появляться пораженные гетерозиготы. Они являются крайними вариантами, которые образуют хвост биномиального распределения всех паттернов инактивации. Однако гипотеза случайной инактивации не предсказывает накопления таких случаев среди сибсов. Тем не менее накопление наблюдалось в случае мышечной дистрофии Дюшенна [451] и в одной семье со сфинголипидозом (болезнью Фабри) [488]. В этой семье девять гетерозиготных дочерей больного мужчины можно было разделить на два класса в одной группе у четырех дочерей активность а-га-лактозидазы А достигала 50%, в то время как в другой группе активность составляла 20% (активность определяли в лейкоцитах). Авторы обсуждают гипотезу, согласно которой имеется ген, детерминирующий предпочтительную инактивацию Х-хромосомы с нормальным аллелем. Случаи гетерозиготного проявления мышечной дистрофии Дюшенна можно, вероятно, объяснить таким же образом. Точное определение генной активности у гетерозигот по Х-сцепленным болезням способствует накоплению и обобщению подобных сведений. [c.108]


Смотреть страницы где упоминается термин Случайное распределение генов: [c.192]    [c.424]    [c.302]    [c.448]    [c.105]    [c.120]    [c.178]    [c.34]    [c.80]    [c.342]    [c.222]    [c.144]    [c.266]    [c.143]    [c.301]    [c.72]    [c.168]   
Генетические исследования (1963) -- [ c.123 ]




ПОИСК







© 2024 chem21.info Реклама на сайте