Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфатный акцептор

    Молекула ФЕП становится донором богатой энергией фосфатной фуппы, которая переносится на АДФ с помощью фермента пируваткиназы. Таким образом, в процессе превращения 2-ФГК в пировиноградную кислоту имеет место высвобождение энергии и запасание ее в молекуле АТФ. Это второе субстратное фосфорилирование. По ряду черт оно отличается от первого субстратного фосфорилирования 1) если в первом случае образование макроэргической фосфатной связи протекало одновременно с присоединением к субстрату фосфатной группы, то во втором — фосфатная Фуппа была присоединена к молекуле субстрата задолго до этого события 2) первое субстратное фосфорилирование связано с реакцией окисления, приводящей к тому, что от молекулы 3-ФГА отрываются два электрона и переходят на ПАД , т.е. молекула 3-ФГА служит донором электронов, но вопрос о конечном акцепторе их на этом этапе не решен. Напротив, при втором субстратном фосфорилировании, связанном с реакцией дегидратации молекулы 2-ФГК, решается проблема и донора и акцептора. Здесь в [c.213]


    Л.4- Фосфотрансферазы с фосфатной группой в качестве акцептора [c.456]

    Фосфорные эфиры нуклеозидов называются нуклеотидами. Многие коферменты являются нуклеотидами. Нуклеотиды, играющие весьма важную роль во многих биологических процессах, найдены практически во всех живых клетках. В этом отношении аденозинтрифосфат LH (АТФ) действует как ключевой передающий агент, связывающий фосфатные доноры и акцепторы. Сле- [c.332]

    СО — NH —, глюкозидазы — глюкозидной связи в глюкозидах или полисахаридах, эстеразы — эфирную связь в эфирах карбоновой, фосфорной и серной кислот и т. д. Другую большую группу составляют ферменты-переносчики групп, катализирующие перенос от субстрата к акцептору определенной химической группы, такой, как атом водорода, фосфатная, глюкозильная или ацильная группы. Реакции с переносом атома водорода часто имеют отношение к образованию энергии в живой ткани, а ферменты называют оксидазами, если такой перенос осуществляется к молекулярному кислороду или от него, и дегидразами, если перенос осуществляется к другим молекулам или от них. Помимо этих двух больших групп, имеется множество более мелких групп, например для ферментов, катализирующих неокислительное декарбоксилирование, либо присоединение к двойной связи и противоположное ему разложение, либо изменения в пространственной конфигурации. [c.109]

    Аденозинтрифосфорная Акцептор кислота (АТФ) фосфатного [c.781]

    Прежде всего рентгеноструктурный анализ позволяет определить вторичную, третичную и четвертичную структуры молекул различных ферментов, что дает возможность сравнивать их с соответствующими структурами некаталитических глобулярных белков. Такие сравнения не выявили никаких специфических особенностей в трехмерной структуре ферментов, по которым они отличались бы от некаталитических белков. Однако ферменты, принадлежащие к одному классу (например, ферменты, катализирующие перенос фосфатных групп от АТР на молекулы, играющие роль акцепторов фосфата) могут обладать какими-то общими для всех них структурными особенностями. [c.255]

    Концевая фосфатная группа АТР может переноситься с помощью ферментов на различные акцепторы фосфата. При pH 7 фосфатные группы полностью ионизованы. Б. Пространственная модель молекулы АТР. [c.414]

    Аденозиндифосфат (ADP). Рибонуклеозид-5 -дифосфат, выполняющий роль акцептора фосфатной группы в энергетическом цикле клетки. [c.1007]

    В разд. Ш-Е, посвященном биотехнологии, рассказывалось о том, как природа кодирует в полимерных молекулах ДНК информацию, необходимую для создания живого организма. Цепочка из повторяющихся сложноэфирных фосфатных связей между сахарами образует жесткий скелет ДНК, на котором информация может быть записана с помощью особого алфавита из четырех аминов — аденина, тимина, цитозина и гуанина (А, Т, С и О). Эти циклические амины, каждый из которых содержит несколько атомов азота, ковалентно связаны с фрагментами сахаров. Их последовательность и кодирует информацию. Эти амины называют основаниями , но в действительности способность образовывать водородные связи, выступая в роли доноров электронов ( оснований ), у них сочетается со способностью участвовать в образовании этих связей и в качестве акцепторов, т.е. доноров протона , или кислот . Водородные связи играют важную роль в механизме репликации. Двойная спираль ДНК держится на водородных связях между аминами — кислотами/ основаниями в одной из нитей ДНК с дополнительными (комплементарными) аминами — основаниями/кислотами во второй нити. Поэтому информацию, записанную в молекуле ДНК, легко прочитать, просто разрывая и вновь создавая эти относительно слабые водородные связи, совсем не затрагивая более прочные связи сахар—фосфат в цепочке-матрице. [c.171]


    Характерная черта циклического фотофосфорилирования — образование АТФ без участия донатора или акцептора электронов. Энергия для появления макроэргических фосфатных связей. ТФ доставляется светом. [c.136]

    На другие акцепторы фосфатных групп, использование АТФ при мышечной работе и т.п. [c.259]

    Пожар и Кирай (Pozsar а. Kiraly, 1958), изучив содержание различных форм фосфора в листьях восприимчивого сорта пшеницы, зараженных стеблевой ржавчиной, установили, что ржавчина действует аналогично динитрофенолу, подавляя окислительное фосфорилирование и приводя к накоплению фосфатного акцептора (АДФ) и неорганического фосфата. Авторы высказывают предположение, что энергия, необходимая для образования вещества тканей гриба, не является энергией АТФ. [c.171]

    Регистрация активности. А. Кювету спектрофотометра заполняют раствором, содержащим 25 мМ фосфатный буфер, 0,1 мМ ЭДТА, 20 мМ сукцинат калия и 40 мкМ цитохром с, pH 7,4. Устанавливают длину волны регистрации 550 нм, как описано на с. 412. Реакцию начинают внесением активированного препарата ( 2—10 мкг/мл среды измерения) фермента и рассчитывают его активность в микромолях окисленного сукцината за 1 мин на 1 мг белка. Коэффициент молярной экстинкции для восстановленного цитохрома с (vlsso— 55о)= 18. Б. В связи с тем что цитохром с служит акцептором электронов, но не протонов, сукцинат цитохром с-редуктазная активность при pH>6 может быть записана в виде  [c.428]

    Это равповесие позволяет системе АТФ — АДФ присоединить фосфатную группу от соединения, обладающего большей энергией (например, ацетил-фосфата), в результате чего АДФ превращается в АТФ, а затем перенести ее па соответствующий акцептор с образованием соедипепия, более бедного энергией (папример, глицеро-1-фосфата) при этом АТФ превращается обратно в АДФ. Таким образом, биологическое значение АТФ, своего рода деду-тки всех макроэргических соединений, вытекает из его способности функционировать в качестве фосфатного челпока это свойство АТФ обусловлено промежуточным значением его энергии по сравнению с другими фосфатами. [c.373]

    Амфотерные (амфолитные) ПАВ содержат в молекуле гидрофильный радикал и гидрофобную часть, способную быть акцептором или донором протона в зависимости от pH р-ра. Обычно эти ПАВ включают одну нли неск. основных и кислотных групп, могут содержать также и неионогенную полигликолевую группу. В зависимости от величины pH они проявляют св-ва катионактивных или анионактивных ПАВ. При нек-рых значениях pH, наз. изоэлектрической точкой, ПАВ существуют в виде цвиттер-ионов. Константы ионизации кислотных и основных групп истинно р-римых амфотерных ПАВ весьма низки, однако чаще всего встречаются катионно-ориентированные и анионно-ориентированные цвиттер-ионы. В качестве катионной группы обычно служит первичная, вторичная или третичная аммониевая группа, остаток пиридина или имидазолина. В принципе вместо N м. б. атомы S, Р, As и т. п. Анионными группами являются карбоксильные, сульфонатные, сульфоэфирные или фосфатные группы. [c.587]

    Важное значение имеет реакция расщепления а-кетолов, в которой используется стадия в (рис. 8-3) с последующим обращением этой же стадии, но с другим акцептором альдегида. Эту реакцию катализирует транскетолаза [уравнение (9-15)] —фермент, необходимый в пентозо-фосфатных путях метаболизма и в фотосинтезе. Родственная реакция (рис, 8-4), которая имеет более сложный механизм, катализируется ферментом фосфокетолазой эта реакция играет важную роль в энергетическом метаболизме некоторых бактерий. Продуктом реакции, ка- [c.206]

    Характерная особенность биосинтеза липидов заслуживает того, чтобы прокомментировать ее здесь. Холин и этаноламин активируются аналогично тому, как это имеет место в случае сахаров [уравнение (11-26). Например, холин может быть фосфорилирован с использованием АТР [уравнение (11-26), стадия а], а образующийся фосфорилхолин может далее превращаться в цитидиндифосфатхолин [уравнение (11-26), стадия б]. В результате переноса фосфорилхолина из последнего соединения на подходящий акцептор образуется конечный продукт [уравнение (11-26), стадия в]. Следует отметить отличие этих реакций полимеризации от синтеза полисахаридов, которое состоит в том, что вступление в реакцию сахаронуклеотида сопровождается отщеплением целого нуклеозиддифосфата, тогда как в реакциях DP-холина и DP-этанолами-на отщепляется СМР, а одна фосфатная группа остается в конечном продукте. То же самое имеет место в случае синтеза бактериальных тейхоевых кислот (гл. 5, разд. Г, 2). Сначала образуется DP-глицерин или DP-рибит, а после этого происходит полимеризация с отщеплением СМР и образованием чередующегося сахарофосфат-алкогольного полимера [28а]. [c.494]

    Молекулярный механизм действия металлов в энзиматическом катализе, или роль металлов в активировании ферментами. В ряде случаев ионы металлов (Со , Mg , Zn , Fe ) выполняют функции простетических групп ферментов, или служат акцепторами и донаторами электронов, или выступают в качестве электрофилов либо нуклеофилов, сохраняя реактивные группы в необходимой ориентации. В других случаях они способствуют присоединению субстрата к активному центру и образованию фермент-субстратного комплекса. Например, ионы Mg через отрицательно заряженную фосфатную группу обеспечивают присоединение монофосфатных эфиров органических веществ к активному центру фосфатаз, катализирующих гидролиз этих соединений. Иногда металл соединяется с субстратом, образуя истинный субстрат, на который действует фермент. В частности, ионы Mg активируют креатинфосфокиназу благодаря образованию истинного субстрата—магниевой соли АТФ. Наконец, имеются экспериментальные доказательства прямого участия металлов (например, ионов Са  [c.146]


    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]

    У прокариот известны три способа получения энергии разные виды брожения, дыхания и фотосинтеза. В процессах брожения в определенных окислительно-восстановительных реакциях образуются нестабильные молекулы, фосфатная группа которых содержит много свободной энергии. Эта фуппа с помощью соответствующего фермента переносится на молекулу АДФ, что приводит к образованию АТФ. Реакции, в которых энергия, освобождающаяся на определенных окислительных этапах брожения запасается в молекулах АТФ, получили название субстратного фосфо-рилирования. Их особенностью является катализирование растворимыми ферментами. Образующийся в восстановительной части окислительно-восстановительных преобразований сбраживаемого субстрата восстановитель (НАД Н2, восстановленный фер-редоксин) переносит электроны на подходящий эндогенный акцептор электрона (пируват, ацетальдегид, ацетон и др.) или освобождается в виде газообразного водорода (Нз). [c.94]

    АДФ и особенно АТФ содержат богатые энергией фосфатные связи. Поэтому при переносе остатка фосфорной кислоты молекулой АТФ на какой-то биологический акцептор (Н—Н) выделяется значительное количество энергии (трансфосфоли-рование), происходящее под действием киназ  [c.565]

    Хотя две описанные выше группы ферментов катализируют реакции переноса, их не называют трансферазами , так как по определению трансферазы это ферменты, которые осуществляют перенос части молекулы донора, за исключением водорода и электронов, на молекулу акцептора, причем ни донором, ни акцептором не является вода . Трансферазы — очень большая группа ферментов. В нее входят фосфотрансферазы, обычно называемые киназами , которые катализируют перенос остатка фосфата от одного соединения на другое. Например, гексокиназа катализирует перенос концевого фосфатного остатка аденозинтрифосфата на глюкозу с образованием глюкозо-6-фосфата. Трансаминазы осуществляют перенос аминогруппы от а-аминокислоты на а-кетокислоту. Обзор, посвященный трансферазам, опубликован Гоффманн-Остенгофом [17] в 1960 г. [c.12]

    Дифосфоглицериновая кислота обладает более высоким уровнем энергии, чем 3-фосфоглицериновая кислота, так что часть энергии, связанная с окислением альдегида, запасается. Фосфатный остаток карбоксилфосфата может быть перенесен на АДФ и затем на другой акцептор фосфата, например на глюкозу. [c.87]

    Перенос конечного фосфатного остатка АТФ на различные акцепторы катализируется специфическими ферментами киназами. Можно считать, что механизм этой реакции заключается в нуклеофильной атаке на конечный фосфат АТФ. Субстраты реакции, обладающие электроноотрицательной группой К — О — Н, можно подразделить на следующие группы  [c.90]

    Мы видели выше, что в термодинамической шкале фосфорилированных соединений АТР занимает промежуточное положение, т. е. характеризуется средней величиной AG . Именно эта особенность АТР наряду с другими его свойствами позволяет ему служить промежуточным переносчиком фосфатных групп от сверхвысокоэнергетических соединений, т. е. от таких, которые при гидролизе выделяют больше свободной энергии, чем АТР, к акцепторам фосфата, фосфорилированные производные которых характеризуются низким значением AG° и потому при гидролизе в стандартных условиях выделяют меньше свободной энергии, чем АТР. [c.418]

    ГО сверхвысокоэнергетического фосфори-лированного соединения (обозначим его через X - ) переносится на ADP, в результате чего образуется АТР. На втором этапе другая специфичная киназа переносит концевую фосфатную группу АТР на молекулу, выполняющую функцию акцептора фосфата (обозначим ее через Y), повышая тем самым ее энергию. В результате образуются молекулы Y — и ADP. Запищем обе реакции  [c.420]

    В итоге этих двух реакций, сопряженных через общий промежуточный продукт, АТР, химическая энергия передается от X - фк У посредством переноса фосфатной группы. В таких реакциях переноса фосфатных групп почти всегда посредником является АТР, поскольку клетки обычно не содержат киназ, способных осущёв Йлять перенос фосфатных групп непосредственно от сверхвысокоэнергетических фосфорилированных соединений к низкоэнергетическим акцепторам. [c.420]

Рис. 14-9. Перенос фосфатных групп от сверхвысокоэнергетических фосфорилированных соединений (доноров фосфата) через АТР к различным соединениям-акцепторам с образованием низкоэнергетических фосфорилированных производных этих соединений. Этот перенос фосфатных групп, катализируемый киназами, сопровождается в конечном итоге в условиях клетки потерей свободной энергии. Креатинфосфат в мышечных и нервных клетках служит резервным источником высокоэнергетических фосфатных групп. Рис. 14-9. <a href="/info/567087">Перенос фосфатных групп</a> от сверхвысокоэнергетических фосфорилированных соединений (доноров фосфата) через АТР к <a href="/info/39814">различным соединениям</a>-акцепторам с образованием низкоэнергетических <a href="/info/216543">фосфорилированных производных</a> <a href="/info/208436">этих соединений</a>. Этот <a href="/info/567087">перенос фосфатных групп</a>, катализируемый киназами, сопровождается в конечном итоге в <a href="/info/1384734">условиях клетки</a> потерей <a href="/info/2431">свободной энергии</a>. Креатинфосфат в мышечных и <a href="/info/103255">нервных клетках</a> служит <a href="/info/66736">резервным источником</a> <a href="/info/1351227">высокоэнергетических фосфатных</a> групп.
    Протекающие в клетке ферментативные реакщ и переноса фосфатных групп представлены на рис. 14-9. Важная особенность этого переноса состоит в том, что почти все сверхвысокоэнергетические фосфорилированные соединения передают свои фосфатные группы низкоэнергетическим акцепторам фосфата через АТР, так что передача совершается в два этапа оба эти этапа катализируются специфичными киназами. [c.423]

    Хотя в клеточных реакциях используемый АТР расщепляется обычно до ADP и фосфата (Р,), а непосредственным акцептором фосфата в реакциях, сопровождающихся выделением энергии, служит ADP, известны и такие клеточные реакции, в которых от молекулы АТР отщепляются в виде одного фрагмента обе его концевые фосфатные группы, р и 7 (рис. 14-2) продуктами расщепления оказываются в этом случае неорганический пирофосфат (PPj) и аденозинмоно-фосфат (АМР). Примером такой реакции может служить ферментативная активация жирных кислот с образованием их СоА-производных (рис. 18-2) жирная кислота приобретает при этом энергию и превращается в соответствующее СоА-производное (рис. 14-16), используемое затем в качестве активированного предшественника при биосинтезе липидов  [c.429]

    Распад пуриновых нуклеотидов (рис. 22-23) начинается с отщепления фосфатной группы под действием 5 -ну-клеотидазы. Из аденилата таким путем образуется аденозин, который, дезаминируясь, превращается в инозин. Инозин затем подвергается гидролизу, что приводит к образованию пуринового основания гипоксантина и D-рибозы. Гипоксантин окисляется до ксантина и далее до мочевой кислоты под действием ксантиноксидазы, сложного флавинзави-симого фермента, в простетической группе которого содержится один атом молибдена и четыре железосерных центра (разд. 17.8). Акцептором водорода в этой [c.672]


Смотреть страницы где упоминается термин Фосфатный акцептор: [c.235]    [c.310]    [c.50]    [c.376]    [c.300]    [c.59]    [c.317]    [c.463]    [c.476]    [c.182]    [c.182]    [c.99]    [c.230]    [c.422]    [c.435]    [c.63]   
Фотосинтез 1951 (1951) -- [ c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Акцептор



© 2024 chem21.info Реклама на сайте