Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрофотометрия инфракрасная абсорбционная

    СПЕКТРОФОТОМЕТРИЯ (абсорбционная) — физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой, видимой и инфракрасной части спектра. Методом С. изучают зависимость интенсивности (энергии) излучения, поглощения, отражения, рассеяния или иного преобразования света, излучаемого веществом или падающего на него, от длины волны. С. широко применяют для изучения строения и состава различных соединений (комплексов, красителей, аналитических реагентов и т. д.), для качественного и количественного определения веществ (открытия следов элементов в металлах и сплавах). Приборы, которыми пользуются в С., называют спектрофотометрами. [c.234]


    Спектральный анализ (эмиссионный) — физический метод качественного и количественного анализа состава вещества на основе изучения спектров. Оптический С. а. характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000—10 000°С. В качестве источников возбуждения спектров прп анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Качественный н полуколичественныйС. а. сводятся к установлению наличия или отсутствия в спектре характерных линий и оценки по их интенсивностям содержания искомых элементов. Количественное определение содержания элемента основано на Эмпирической зависимости (при малых содержаниях) интенсивности спектральных линий от концентрации элемента в пробе. С. а.— чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др- МетодС. а. был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле. Спектроскопия инфракрасная — см. Ифракрасная спектроскопия. Спектрофотометрия (абсорбционная)—физико-химический метод исследования растворов и твердых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—iOO нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в С.,— зависимость интенсивности поглощения падающего света от длины волны. С. широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы С.—спектрофотометры. [c.125]

    Метод абсорбционной спектроскопии (спектрофотометрии) относится к оптическим методам анализа и основан на взаимодействии вещества с излучениями ультрафиолетовой (УФ), видимой и инфракрасной (ИК) областей электромагнитного спектра, а именно на избирательном поглощении электромагнитного излучения однородными нерассеивающими системами. [c.5]


    Спектрофотометрия, как и фотометрия, относится к абсорбционному анализу, основанному на поглощении света определяемым веществом в видимой, ультрафиолетовой и инфракрасной областях спектра. Она также основана на законе Бугера, т. е. на принципе существования пропорциональной зависимости между светопогло-щением и концентрацией поглощающего вещества. Однако в спек-трофотометрии анализ осуществляется по светопоглощению монохроматического света, т. е. света определенной длины волны. [c.140]

    Детекторы. Детекторы инфракрасного излучения, используемые в абсорбционной спектроскопии [3], можно разбить на две большие группы I) так называемые термические детекторы, действие которых основано на измерении тепловых эффектов, возникающих под действием суммарной энергии большого числа падающих фотонов, и 2) фотонные детекторы, полупроводниковые устройства, в которых электрон может поглотить квант ИК-излучения и перейти из валентной зоны в зону проводимости, внося свой вклад в электропроводность. В целом фотонные детекторы обладают быстрой реакцией и более чувствительны, однако интервал длин волн их ограничен, и, кроме того, они действуют при температуре жидкого азота или ниже. Термические детекторы, напротив, применимы в широком интервале длин волн и не требуют охлаждения, но они инерционны и относительно мало чувствительны. За исключением детектора с внутренним фотоэффектом из РЬ5, который широко применяется в ближней ИК-области при комнатной температуре, фотонные детекторы редко используются в лабораторных спектрофотометрах и далее не обсуждаются. [c.101]

    Молекулярный абсорбционный анализ основан на поглощении электромагнитных излучений молекулами или сложными ионами в ультрафиолетовой, вй-димой или инфракрасной областях спектра. К это группе методов относят спектрофотометрию, колориметрию и ИК-спектроскопию. [c.294]

    Если качественный и количественный эмиссионный спектральный анализ в настоящее время не применим полностью к исследованию сложных газовых смесей, то тонкие методы инфракрасной абсорбционной спектрофотометрии приобрели широкое практическое значение при аналитическом определении состава газов. [c.248]

    При исследованиях методом инфракрасной абсорбционной спектроскопии часть молекул образца переходит на более высокие энергетические уровни вследствие поглощения излучения из пучка инфракрасного света. При изучении спектров испускания молекулы образца также переходят на более высокие энергетические уровни, но наблюдаются спектры, обусловленные спонтанными переходами с более высоких на более низкие энергетические уровни. Спектры поглощения и испускания лю бого данного соединения будут иметь полосы приблизительно в одних и тех же положениях. Инфракрасные спектры испускания применяются очень редко, так как экспериментальные методы их получения более сложны, чем методы получения спектров поглощения. Однако эмиссионная спектроскопия имеет большое преимущество при изучении адсорбированных молекул, ввиду того что в качестве адсорбентов могут быть использованы нагретые массивные металлы. Металлические стержни, нагретые выше 150° С, дают достаточное количество излучения, для того чтобы можно было его изучать спектрофотометром Перкина—Эльмера (модель 21). В этом случае стержни должны быть приближены вплотную к входным щелям, которые должны быть открыты на максимальную щирину. Можно получить дифференциальные спектры испускания, если стержень, находящийся перед одной щелью, покрыть тонким слоем изучаемого вещества, а второй стержень, помещенный перед другой щелью, оставить непокрытым. [c.67]

    Отметим, что при выводе основного закона светопоглощения не делалось никаких предположений ни о природе поглощающей среды, ни о характере поглощаемого излучения. Поэтому этот закон универсален. Он справедлив не только для спектрофотометрии, но и для других абсорбционных спектроскопических методов (атомно-абсорбционных, инфракрасных, рентгеновских). Поскольку связь между концентрацией и оптической плотностью прямо пропорциональна, то из всех возможных величин, характеризующих светопоглощение, именно оптическую плотность удобнее всего использовать в спектрофотометрии в качестве аналитического сигнала. [c.269]

    Кварцевая оптика позволяет измерять коэффициент пропускания и абсорбционность прозрачных жидких (и твердых) веществ в широком диапазоне длин волн. Эти спектрофотометры используют для регистрации спектров поглощения в области 1100—220 нм, т.е. в ближайшей инфракрасной (760—1100 нм), видимой (400—760 нм) и ультрафиолетовой (185—400 нм) областях спектра. [c.359]

    Из спектроскопических методов особое место призваны занять методы атомной абсорбции, рентгеновской флуоресценции, масс-спектрометрии на вооружении сохранятся эмиссионный спектральный анализ и спектрофотометрия. Атомно-абсорбционный метод станет одним из наиболее распространенных и важных. Будут созданы атомно-абсорбционные квантометры, прецизионные спектрофотометры, разработаны методы анализа твердых проб. Лазеры, в частности с плавно изменяющейся длиной волны, будут применяться в инфракрасной и электронной спектроскопии, для спектрофотометрического и люминесцентного анализа. Можно предполагать разработку высокочувствительных и точных методов молекулярного анализа с использованием микроволновой и ра-диоволновой спектроскопии. В люминесцентном анализе расширится использование низких и сверхнизких температур для повышения чувствительности и точности анализа. [c.238]


    Указанных недостатков лишены спектрофотометры, предназначенные главным образом для снятия спектров поглощения. Здесь светофильтры заменены монохроматором—оптическим устройством, позволяющим выделять узкие участки спектра. Спектрофотометры могут применяться и для абсорбционного анализа. Ниже описаны спектрофотометры СФ-4 (для ультрафиолетовой, видимой и ближней инфракрасной областей) и СФ-5 (для видимой и ближней инфракрасной областей). [c.100]

    Как уже отмечалось выше, большинство молекул при комнатной температуре находится в основном колебательном состоянии, так что поглощение ИК-излучения является обычно более чувствительным и важным, чем испускание. К тому же, за исключением нескольких особых случаев, инфракрасная флуоресценция не является эффективным процессом. Поэтому не удивительно, что аппаратура для измерений ИК-области основана на регистрации поглощения излучения и аналогична применяемой в ультрафиолетовой и видимой спектрофотометрии. Однако, поскольку характеристики пропускания ИК-излучения для большинства материалов отличаются от характеристик пропускания ультрафиолетового и видимого излучений, ряд блоков приборов, используемых в этих двух областях спектрометрии, отличаются. На рис. 21-3 показана блок-схема типичного ИК-спектрофотометра. Сравним ее с принципиальной схемой спектрохимического прибора, изображенной на с. 617, и со схемой абсорбционного спектрофотометра на рис. 18-11. Явным отличием от абсорбционных приборов является расположение химической пробы. В ИК-спектрометрии химическую пробу помещают перед (а не после) монохроматором. Такое расположение [c.727]

    Жигер [155] вновь проверил поглощение перекиси водорода в области, изученной Бейли и Гордоном, и расширил их исследование. Жидкую 99,5%-ную перекись водорода изучали в области 2—21 а, а пары (при 90° и давлении 5, 10 и 15 мм)—в области 1,4—15 и.. Жидкость исследовали в виде пленки, зажатой между пластинками из хлористого серебра, причем пришлось столкнуться с трудностями, обусловленными разложением. В абсорбционной трубке для паров окна также были сделаны из хлористого серебра. Для работ при длинах волн за пределами 15ц применяли спектрометр с оптикой из бромистого калия, причем для устранения помех от поглощения инфракрасного излучения водяным паром корпус спектрометра подвергали специальному обезвоживанию. В табл. 50 приведены значения частот в центрах полос поглощения и коэффициенты поглощения, определенные Жигером [155]. Для жидкости полоса поглощения при 18,3 i была мало четкой, а полоса при 2,1 i—очень слабой существование последней признано не вполне доказанным, поскольку она обнаружена ие на всех фотометрических кривых. Разрешающая способность спектрофотометра была достаточно высокой и позволила для пара четко обнаружить два максимума на полосе при 8 i, причем на некоторых фотометрических кривых обнаружено еще присутствие Q-ветви. Изучена также полоса 1,4 [г. Для пара в условиях высокой разрешающей способности идентифицированы отдельные частоты обеих составляющих полос и проведен анализ полосатой структуры. [c.234]

    Научные приборы. Инфракрасные, ультрафиолетовые и атомно-абсорбционные спектрофотометры газовые хроматографы дифференциальные термические анализаторы элементов спектрометры ядерно-магнитного резонанса и электронные самописцы фирмы Перкин — Эльмер . [c.157]

    Важнейшими областями спектроскопии являются качественная и количественная эмиссионная спектроскопия, абсорбционная спектрофотометрия в инфракрасной и ультрафиолетовой областях спектра, а также комбинационное рассеяние света. [c.247]

    Молекулярный абсорбционный анализ, т. е. анализ по поглощению света молекулами анализируемого вещества и сложными ионами в ультрафиолетовой, видимой и инфракрасной областях спектра (спектрофотометрия, фотоколориметрия, ИК - с п е к т р о-с к о п и я). [c.6]

    Как было указано выше, наиболее подходящим прибором для точного определения количеств вещества порядка нескольких тысячных микрограмма является фотоэлектрический спектрофотометр Бекмана [20]. Именно поэтому мы несколько подробнее остановимся на этом приборе. Он предназначен для измерений в видимой, ближней инфракрасной и ультрафиолетовой областях спектра. Монохроматор дает возможность выделять полосу приблизительно монохроматического излучения в пределах длин волн 220—1 ООО т< . Количество излучения достаточно велико, благодаря чему конструкция используемого фотометра проста, а вся аппаратура смонтирована прочно и компактно. В отличие От большинства других продажных спектрофотометров, в приборе Бекмана предусмотрена возможность легко заменять источник излучения, фотоэлемент и приспособление для крепления абсорбционных кювет. [c.91]

    Молекулярный спектральный анализ (молекулярный абсорбционный анализ) основан на поглощении света молекулами анализиуемого вещества в ультрафиолетовой, видимой и инфракрасной областях спектра (спектрофотометрия, фотоколориметрия, ИК-спектроскопия). К этой же разновидности аналитических методов относится и люминесцентный (флуориметриче-ский) анализ, основанный на измерении излучения, возникающего в результате выделения энергии возбужденными молекулами анализируемого вещества [ 1 —3]. [c.249]

    Молекулярная абсорбционная спектроскопия основана на поглощении веществами электромагнитного излучения светового потока. В зависимости от энергии поглощаемых фотонов она подразделяется на абсорбционную спектроскопию в видимой, ультрафиолетовой и инфракрасной, микроволновой и рентгеновской областях. Спектроскопия в видимой и УФ областях называется спектрофотометрией. [c.93]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ, метод качеств, и количеств, определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соота. элементного и молекулярного состава в-ва. Эмиссионбый С. а. проводят по спектрам испускания атомов, ионои или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения аиализнруем1>1ми объектами (см. Абсорбционная спектроскопия). В зависимости от цели исследования, св-в анализируемо о в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метрологич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Ато.мно-абсорбционный анализ. Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ. Молекулярная оптическая спектроскопия. Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия). [c.392]

    По диапазону длин волн (или частот) электромагн. излучения выделяют радиоспектроскопию, микроволновую спектроскопию, оптическую С. (см. Инфракрасная спектроскопия. Молекулярная оптическая спектроскопия. Ультрафиолетовая спектроскопия), рентгеновскую спектроскопию и гамма-спектроскопию (см. Мёссбауэровская спектроскопия. Гамма-абсорбционный аиализ). Оптическую С. на практике иногда отождествляют со спектрофотометрией. В каждом разделе С. используются свои приборы для получения, регистрации и измерения спектров. В соответствии с различием конкретных эксперим. методов выделяют спец. разделы С., напр. Фурье-спектроскопия, лазерная спектроскопия. [c.394]

    Абсорбционные спектрометры. Однолучевой абсорбционный спектрометр применяется практически во всех абсорбционных спектрометрических системах, будь то спектрометры для ультрафиолетового, видимого и инфракрасного диапазонов спектра, атомно-абсорб1щонные спектрофотометры или же рентгеновские абсорбционные спектрометры (рис. 11.9). Источники и приемники света должны быть подходящими для данного аналитического метода и должны быть согласованы между собой в спектральном отношении. [c.216]

    Отечественной промышленностью выпущен ряд приборов для абсорбционного молекулярного анализа простой нерегистрирующий спектрофотометр СФ-4, и на его основе существенно модернизированный прибор СФ-16, автоматический спектрофотометр (для видимой области спектра) СФ-14, автоматические спектрофотометры СФ-8 и СФ-9 с двойным монохроматором, автоматические инфракрасные спектрофотометры ИКС-22, ИКС-14А, ИКС-16, спектрометры ИКС-21 и СДЛ-1, скоростной спектрофотометр-спектровизор СПВ-1, спектрометр ДФС-12 для исследования спектров комбинационного рассеяния, вакуумный монохроматор ВМР-2 и другие приборы. [c.10]

    Оборудование самой маленькой лаборатории водоочистной установки может состоять только из нефелометра, компаратора остаточного хлора, рН-метра и стеклянной посуды для определения жесткости и щелочности. Полностью оборудованная лаборатория для водопроводной станции, обслуживающей район какого-либо крупного города, включает инфракрасные, ультрафиолетовые и атомно-абсорбционные спектрофотометры, газовый хроматограф, амперометрический титратор и измеритель электропроводимости, а также лабораторные печи и стеклянную посуду. Для проведения бактериологических анализов необходимы термостаты, автоклавы, специальная посуда и среды для культур. Если выше по течению реки расположена атомная электростанция, возникает необходимость в радиохимическом надзоре и в приобретении некоторого специального оборудования. Лаборатории, обслуживающие крупные системы водоснабжения, обычно возглавляются химиком с университетским образованием или инженером-химиком. В штат лаборатории иногда входит еще несколько специалистов и два или три лаборанта (в зависимости от объема программы испытаний). Лабораторный персонал может также быть частично или полностью занят на очистных сооружениях, выполняя там функции контроля. Оменные операторы могут быть обучены проведению анализов, например на мутность, щелочность и остаточный хлор. Стандартный подсчет колиформ может также выполняться операторами, прошедшими соответствующее обучение. Преимущество обучения операторов лабораторным приемам состоит в том, что рабочая смена операторов продолжается целые сутки, тогда как лабораторный персонал работает только 8 ч в день. Круглосуточное наблюдение важно потому, что оно позволяет обнаружить внезапные изменения в качестве исходной воды. [c.234]

    Абсорбц ионный количественный спектральный анализ основан на измерении количества света, поглощаемого определяемым веществом. Различают спектрофотометрический и фотометрический методы абсорбционного анализа. Спектрофотометря-ческий метод основан на измерении поглощенного света определенной длины волны (монохроматического излучения). Фотометрический метод основан на измерении поглощенного света не строго монох1раматического излучения. Измерения проводят в видимой (колориметрия), ультрафиолетовой и инфракрасной частях спектра ((ом. Введение , 7). [c.470]


Смотреть страницы где упоминается термин Спектрофотометрия инфракрасная абсорбционная: [c.429]    [c.3]    [c.214]    [c.163]    [c.4]    [c.5]    [c.5]   
Газовый анализ (1955) -- [ c.248 ]

Газовый анализ (1961) -- [ c.248 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрофотометр

Спектрофотометрия



© 2024 chem21.info Реклама на сайте