Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкость неподвижная полос

    Одномерная восходящая хроматография. 1-—5 мкл исследуемого раствора капилляром наносят на полосу хроматографической бумаги в 2 см от нижнего края. Если неподвижная фаза — вода, то бумагу специально не обрабатывают, так как воздушносухая бумага содержит до 20—22% влаги. Подвижную фазу, насыщенную неподвижной, наливают на дно сосуда для хроматографирования (в цилиндр или пробирку). Полосу бумаги нижним краем опускают в жидкость, а верхний край закрепляют так, чтобы бумага свободно свисала вниз, не касаясь стенок сосуда. Под действием капиллярных сил подвижная жидкость поднимается вверх по бумаге и разделяет компоненты смеси, которые при различных значениях движутся по слою бумаги с неодинаковыми скоростями. [c.75]


    Начиная с работ М. С. Цвета, открывшего элютивную жидкостно-адсорбционную хроматографию, ее развитие сопровождалось ростом числа приложений в области биологии и медицины. Разработка А. Мартином и Р. Синджем (1941) жидкостной распределительной хроматографии значительно расширила возможности хроматографических методов. Преимуществами распределительной хроматографии является возможность работы в области линейной изотермы сорбции, что позволяет избавиться от деформации хроматографических полос. Кроме того, использование органических жидкостей в качестве неподвижной фазы улучшает возможность подбора необходимого сорбента. Она с успехом применяется для анализа и разделения лекарственных препаратов, гормонов, пестицидов, антибиотиков и других веществ. Основным недостатком классической жидкостной хроматографии является длительность процесса, достигающая суток. [c.78]

    Размер пор твердого носителя имеет большое значение для разделительной способности колонки (Бейкер, Ли и Уолл, 1961). В настоящее время оптимальная величина пор не установлена, но уже можно сказать, что носители, обладающие большим числом тонких пор с диаметром от 0,5-10" до 1,5 10 мм, наиболее подходящи для газовой хроматографии. При нанесении неподвижной фазы большая часть ее попадает в эти тонкие поры и лишь тонкая пленка покрывает остальную поверхность, так что внешне материал остается сухим при этом достигается высокая эффективность разделения. Она значительно ухудшается, если большинство пор имеет диаметр больше 1,5 -10" мм или если наносится слишком большое количество неподвижной фазы, так что заполняются также крупные поры. Эти большие лужицы масла вследствие их глубины обладают меньшим отношением поверхности к объему, чем тонкие поры, ввиду чего растворенное (в неподвижной фазе) анализируемое вещество задерживается в жидкости более долгое время, чем в тонких порах. Вследствие этого полосы расширяются и эффективность разделения ухудшается. На твердые носители, поверхность которых содержит преимущественно большие поры, следует поэтому наносить лишь малые количества неподвижной фазы. С другой стороны, мелкопористый материал, например силикагель, мало пригоден в качестве твердого носителя, так как при этом слишком длинные тонкие поры (диаметр 0,25-10" —1,0 10" мм) заполняются неподвижной фазой и отношение к объему тоже слишком мало, так что обмен веществ замедляется и разделительная способность ухудшается. Путем соответствующей обработки (см. разд. 1.7) можно, однако, расширить поры силикагеля (Киселев и Щербакова, 1961). [c.78]


    Разнообразие современных хроматографических методов может привести на первый взгляд к неправильному представлению о том, что объединение столь различных методов одним термином хроматография является искусственным, неправильным. На самом деле это различие только кажущееся. Все современные хроматографические методы обладают рядом общих, причем весьма существенных черт. Так, любое хроматографическое разделение включает перемещение анализируемой пробы через слой неподвижного вещества (твердый адсорбент, жидкая неподвижная фаза, нанесенная на твердый порошкообразный носитель или бумагу). Перемещение компонентов смеси осуществляется газом или жидкостью — подвижной фазой. Вследствие селективного замедления, осуществляемого неподвижной фазой, компоненты анализируемой смеси перемещаются с различными эффективными скоростями. Это обстоятельство приводит к образованию отдельных зон или полос, каждая из которых содержит один компонент разделенной смеси. Задача исследователя состоит в обнаружении темн или иными способами этих зон и определении их качественного и количественного состава. [c.6]

    Вертикальный гидравлический нож с нижним расположением привода. Основными деталями и узлами такого ножа (рис. 2.6) являются нож гильотинного типа 6, закрепленный неподвижно на верхней поперечине — траверсе 7 подвижный стол 4 с прорезью, посаженный на плунжер У гидравлический привод, состоящий из цилиндра 2 и плунжера / колонны 5, соединяющие верхнюю траверсу 7 со станиной 3 сама станина 3 с упорами для установки на фундаменте насосная станция с распределительными устройствами и коммуникациями. От насоса 10 в полость гидравлического цилиндра подается рабочая жидкость (масло) давлением до 13,5 МПа (135 кгс/см ). Под действием этого давления плунжер 1 перемещается вверх. Вместе с ним перемещается стол 4 с расположенной на нем кипой каучука. Кипа каучука соприкасается с лезвием ножа, и при движении вверх лезвие разрезает кипу на две части. Полное разрезание кипы каучука достигается в результате прохода нижней части лезвия ножа в прорезь стола. Для предохранения режущей кромки ножа от преждевременного затупления в прорезь стола 4 закладывается полоса из материала, менее твердого, чем материал ножа, например из меди или свинца. Длительность резки кипы завь сит от жесткости каучука, степени его разогрева, а также от состояния режущей кромки ножа. При нормальных условиях продолжительность резки кипы 1 мин. [c.51]

    Механизм эффекта растворителя более сложен. Экспериментально показано [32], что при поступлении в капиллярную колонку растворитель конденсируется на ее начальном участке. В первый момент по толщине слоя зона сконденсированного растворителя имеет гауссово распределение (рис. II. 13,а). Под влиянием потока газа-носителя зона мигрирует. Спой сконденсированного растворителя можно рассматривать как пленку неподвижной фазы, поэтому относительная скорость миграции каждой узкой полосы зоны будет определяться толщиной пленки растворителя на участке, над которым должна двигаться данная узкая полоса. Поскольку толщина пленки жидкости в максимуме зоны в 100—300 раз превышает толщину пленки неподвижной фазы в остальной части колонки, скорость миграции фронтальных полос зоны будет намного превышать скорость миграции тыльных полос зоны, В результате через короткое время после начала миграции форма сконденсированной зоны станет сильно асимметричной с вертикальным тылом и сильно растянутым фронтом (рис. II.13,б). [c.145]

    Появление дополнительной оптической разности хода между лучами, прошедшими через разные отверстия диафрагмы До, возникшей вследствие различия показателей преломления исследуемого и эталонного растворов, приводит к смещению наблюдаемой в окуляр верхней системы интерференционных полос. Если в обеих камерах кюветы разность хода равна нулю, верхняя система интерференционных полос совпадает с нижней неподвижной (рис. 34,а). При наличии разности хода лучей в камерах кюветы верхняя система полос сместится относительно нижней на некоторое расстояние, зависящее от разности показателей преломления сравниваемых жидкостей (рис. 34,6). Если разность хода лучей в камерах кюветы значительна, то верхняя система полос уйдет из поля зрения окуляра и на ее месте будет видна светлая полоса (рис. 34,а). [c.60]

    В настоящее время термин хроматография используется как собирательное название для группы методов, которые на первый взгляд могут показаться не совсем одинаковыми. Тем не менее они имеют ряд общих черт. Например, все методы хроматографического разделения включают прохождение образца смеси через колонку или ее физический эквивалент. Эта смесь может быть жидкостью или газом. Колонка содержит неподвижную фазу — вещество, которое может представлять собой твердый абсорбент или жидкий разделяющий агент. Компоненты образца проходят через колонку в составе движущейся фазы — газовой или жидкой. Благодаря избирательному замедлению, вызываемому неподвижной фазой, компоненты смеси перемещаются через колонку с различными эффективными скоростями. Таким образом, наблюдается тенденция к разделению их на отдельные зоны или полосы , образующие так называемую хроматограмму. Хроматографические методы предназначены для обнаружения, характеристики и, если это необходимо, выделения этих полос в некоторой точке, обычно на выходе из колонки. Предельная разрешающая способность хроматографии достигается с помощью противоточного процесса, включающего распределение между двумя фазами (в результате адсорбции или растворения) на многих стадиях вдоль колонки. [c.306]


    Сравнение газо-жидкостной хроматографии с другими методами хроматографии выявляет следующие ее преимущества 1) узкие и почти симметричные полосы вытеснения в противоположность полосам с хвостами , характерным для адсорбционных методов 2) высокие скорости потока вследствие малой вязкости газа по сравнению с жидкостью и больших скоростей переноса массы от газа к жидкости 3) широкий выбор неподвижных жидкостей, благодаря чему при удачном подборе неподвижной фазы можно разделять вещества с одинаковыми температурами кипения. [c.321]

    Природа неподвижной жидкости оказывает существенное влияние не только на величину удерживаемого объема и на порядок выхода из колонки компонентов анализируемой смеси. От качества неподвижной фазы (от ее физико-химических свойств) зависит также форма и симметричность полос на выходных кривых, т. е. качественная сторона процесса разделения. [c.198]

    В гл. 2 дается соответствующая трактовка дин > ческих процессов, происходящих в слое неподвижной фазы, через которую протекает жидкость. В конечном счете эти процессы определяют возможную степень разделения, так как они вызывают размывание полосы во всех хроматографических процессах. В этой же главе кратко рассматриваются теории, позволяющие установить связь между параметрами процесса и размыванием полосы, и приводятся практические рекомендации. [c.12]

    Неподвижная жидкая фаза удерживается в пористом слое точно так же, как она удерживалась бы в полностью пористой частице однако из-за небольшой толшины пленки удерживаемой неподвижной жидкости имеется важное преимущество с точки зрения характеристики колонки. Размывание полос зависит от времени диффузии разделяемого вещества через пленку неподвижной жидкости, распределенную на [c.105]

    Обычно хроматографический прибор (рис. 11.1) состоит из разделительной хроматографической колонки, заполненной частицами неподвижной фазы определенного размера. Неподвижная фаза может быть либо твердым адсорбентом, способным адсорбировать на своей поверхности молекулы разделяемой пробы, либо инертным носителем, поверхность которого покрыта пленкой жидкости, поглощающей молекулы газа или пары летучего вещества. Хроматографическую колонку помещают в термостат и непрерывно продувают через нее поток инертного газа-носителя. Небольшая проба летучих веществ вводится специальным приспособлением — дозатором в начальную часть колонки. Газ-носитель перемещает отдельные компоненты разделяемой смеси вдоль слоя неподвижной фазы со скоростями, обратно пропорциональными их адсорбируемостям или растворимостям, в результате чего они будут покидать разделительную колонку в разные моменты времени, образуя своеобразные хроматографические полосы. Содержание компонента в такой полосе определяется чувствительным детектором. При полном разделении каждая полоса отделена от другой зоной чистого газа-носителя. Кривая показаний детектора, обычно регистрируемая автоматически, представляет собой совокупность хроматографических пиков разной высоты и ширины, расположенных на горизонтальной основной линии и образующих так называемую хроматограмму, [c.82]

    Газ-носитель и условия его применения, как было показано, определяют, в основном, лишь степень размытия хроматогра-фических полос. Влияние же неподвижной жидкости распространяется не только на характер размытия, но и на селективность колонки. При этом природа жидкости является тем основным фактором, который определяет последовательность выхода компонентов из колонки и отношение времен элюирования максимумов их зон. [c.69]

    Влияние природы неподвижной фазы на размытие полос. Выше основное внимание уделялось подбору неподвижной жидкости, обеспечивающей необходимую селективность, и не учитывалось влияние природы жидкости на размытие полос. Это влияние, как видно из уравнений (1,47) и (1,48), объясняется зависимостью величины ВЭТТ как от сорбционных характеристик жидкости, так и от значения коэффициента диффузии в жидкой фазе. [c.92]

    Влияние природы неподвижной фазы на размытие полос. Выше основное внимание уделялось подбору неподвижной жидкости, обеспечивающей необходимую селективность, и не учитывалось влияние природы жидкости на размытие полос. Это влияние, как видно из уравнений (1,53) и (1,54), объясняется зависимостью ВЭТТ как от сорбционных характеристик жидкости, так и от значения коэффициента диффузии в жидкой фазе. Рассмотрим. прежде всего влияние коэффициента Генри на характер размытия полос на примере разделения смеси веществ, принадлежащих к одному гомологическому ряду. В первом приближении можно считать, что величина Н практически одинакова для всех гомологов, тогда ширина полосы после элюирования пропорциональна общему коэффициенту Генри, т. е. времени удерживания. При этом, как видно из уравнения (11,3), четкость разделения одинакова для любых пар соседних гомологов. Поэтому для разделения, например, смеси пропана и бутана необходима колонка такой же длины, как и для разделения смеси нонана и декана (предполагается также постоянство Кс, что справедливо при значительной сорбции). Разумеется, допущение постоянства Н лишь грубое приближение. [c.96]

    Разделение веществ методом бумажной хроматографии можно осуществить следующим образом. Раствор, содержащий исследуемую смесь радиоактивных веществ, наносят в виде отдельных капель на так называемую стартовую линию , расположенную недалеко (на расстоянии 3—4 см) от края полосы хроматографической бумаги. После подсушивания этот край погружают в соответствующий растворитель, налитый на дно хроматографической камеры, причем стартовая линия должна быть расположена несколько выше поверхности растворителя (рис. 67). В качестве растворителей обычно используют полярные органические жидкости (алифатические спирты и кетоны с небольшим молекулярным весом, простые эфиры, а также хлороформ, трибутил-фосфат и т. д.) или смеси растворителей, насыщенные водой и органической или минеральной кислотой. В плотно закрытой хроматографической камере, атмосфера которой насыщена парами подвижного растворителя, последний под действием капиллярных сил поднимается вверх по листу бумаги. Как только растворитель достигнет стартовой линии, происходит перераспределение компонентов разделяемой смеси между подвижной и неподвижной фазами в соответствии с коэффициентами распределения каждого компонента. В результате смесь подразделяется на отдельные зоны, перемещающиеся с различной скоростью по потоку растворителя. Через определенное время (от 2—3 ч до нескольких суток — в зависимости от скорости перемещения фронта раствори- [c.194]

    Особенность, выделяюш,ая хроматографию из большинства других физических методов разделения, заключается в наличии одной неподвижной, а другой подвижной фазы. Подвижная фаза может быть жидкостью или газом неподвижная фаза может быть жидкостью или твердым телом. Четыре возможных сочетания дают четыре широких типа хроматографии жидкостно-адсорбционную, жидкостную, газо-адсорбционную и газо-жидкостную. Неподвижная фаза присутствует в форме длинного слоя, она или диспергирована или представляет собой наполнитель с большой поверхностью. Когда образец вводят в начало колонки, его компоненты распределяются между подвижной и неподвижной фазами, и в процессе про.хождения подвижной фазы через колонку каждый компонент движется к концу колонки в виде полосы или зоны со скоростью, меньшей скорости подвижной фазы. Эта скорость зависит от коэффициента разделения (см. разд. 24-1) растворенного вещества. В некоторых случаях может наблюдаться осложняющий фактор адсорбции растворенного вещества носителем, который ошибочно считают инертным. Это явление мы не будем рассматривать здесь отдельно. Достаточно сказать, что если количество адсорбированного вещества пропорционально его концентрации (линейная изотерма), то теория остается справедливой для любого уровня адсорбции. Напомним, что изотерма Ленгмюра (см. разд. 9-1) при- [c.498]

    Размывание полосы и температура. Пять членов уравнения (24-12) можно рассмотреть с точки зрения влияния температуры на скорость потока, удерживаемые объемы и коэффициенты диффузии для того, чтобы оценить общее влияние температуры на размывание полосы. Вызывая термическое расширение, температура также оказывает влияние на такие факторы, как толщина пленки жидкости, диаметры частиц и колонки, а также немного изменяет эмпирические постоянные в формуле (24-14). В случае жидкой подвижной фазы скорость потока (при одинаковом давлении на входе и выходе) сильно зависит от температуры. Но при поддержании постоянной скорости потока и первый член формулы (24-14) уменьшается, в то время как коэффициент диффузии в подвижной фазе увеличивается. При скоростях потока вблизи оптимума первый член приблизительно обратно пропорционален значению От- Второй и третий члены увеличиваются прямо пропорционально коэффициентам диффузии в подвижной и неподвижной фазах От и 0 , в то время как четвертый и пятый члены обратно пропорциональны значениям От и й . Вклад четвертого члена в размывание полосы включает фактор, зависящий от коэффициентов разделения. В соответствии с этим учитываются любые изменения коэффициента разделения с температурой. [c.513]

    Пики поглощения ядерного магнитного резонанса в случае жидкостей очень резкие, в противоположность тому, что наблюдается для инфракрасных и ультрафиолетовых спектров. Это различие объясняется тем, что время жизни энергетического состояния ядерного спина очень велико по сравнению с временем жизни электронного и колебательного состояния. Поэтому влияние взаимодействия с соседними. молекулами в жидкостях, которое хаотически искажает энергию данного состояния, усредняется до постоянной величины за время жизни определенного состояния ядерного спина, в то время как в случае электронных или колебательных энергетических состояний этого не происходит. Для аморфных твердых веществ пики поглощения будут такими же резкими, как и для жидкостей. Однако для кристаллических твердых тел, в которых молекулы упорядочены и неподвижны, соответствующее усреднение взаимодействий не имеет места, и в этом случае происходит расширение полос поглощения. Этот эффект играет важную роль при исследовании твердого состояния макромолекул и дает, например, возможность использовать ядерный магнитный резонанс для определения степени кристалличности твердых полимеров.  [c.119]

    Однако и в том случае, когда эффективность не имеет максимума, а только увеличивается, как это часто имеет место на практике, оптимальная температура колонки определяется степенью разделения Яз. Если для случая тонкого слоя маловязкой неподвижной жидкости с увеличением температуры наблюдается понижение эффективности, то выбирают минимально возможную температуру для данной степени разделения. При этом нижняя граница задается либо допустимым временем анализа, либо чувствительностью детектора, пока получаются достаточно четкие хроматограммы широко растянутых полос компонентов. [c.103]

    Следует иметь в виду, что при использовании концентрационного фактора необходимо учитывать изменение изотермы распределения одного из сорбатов в бинарной фазе, образованной неподвижной жидкостью и другим жидким сорбатом [12]. Кроме того, в этом случае при выборе режима препаративного разделения следует уделить особое внимание влиянию кинетических факторов на размытие хроматографической полосы. [c.40]

    К методам, измеряющим абсолютные значения вязкости, относятся капиллярный, ротационный, соосных цилиндров, параллельных неподвижных или перемещающихся плоскостей и целая группа колебательных методов (крутильные колебания в жидкости цилиндра или диска, колебания полосы, сферы или шара, ультразвуковой пластины и т. д.) [1]. Почти все из данной группы методов пригодны для автоматического непрерывного контроля вязкости, однако практическое их применение крайне затруднено, так как они требуют очень точных и громоздких приспособлений и приводов (насосы строго постоянной производительности, точно откалиброванные сечения и т. д.). [c.6]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Для измерений показателя преломления используют либо электрическую лампочку, либо дневной свет. В этом случае возникает дисперсия света и на границе светотени наблюдаются спектраль-г ые цветные полосы, которые мешают точному отсчету. Для исключения этого явления в нижней части трубы помещают компенсатор, состоящий из двух призм (рис. ХХУП. 3, б). Одна из призм (левая) неподвижна, другая может вращаться вокруг направления луча, выходящего из неподвижной призмы. При вращении дисперсия изменяется от нуля (рис. XXVII. 3,6,1) до удвоенной дисперсии каждой из призм (рис. XXVII. 3, б, II). Следовательно, при некотором положении призм в зрительной трубе появится резкая граница светотени, причем рефрактометр Аббе отградуирован так, что непосредственно дает показатель преломления исследуемой жидкости для желтой линии натрия. [c.321]

    Лучи, [проходящие под кюветой, образуют в толе зрения окуляра нижнюю неподвижную систему интерференционных полос, а проходящие через ювету лучи дают верхнюю подвижную систему полос. Колда разность хода в камерах кюветы равна нулю (обе камеры заполнены одной и той же жидкостью), то верхняя система интерференционныж полос совпадает с нижней (рис. 41, а). При наличии разности хода лу- [c.128]

    Согласно этой теории причина размывания хроматографических полос обусловлена диффузией в газе и порах сорбента, а также массообменом между газом и неподвижной фазой. Сама диффузия имеет сложный характер. В реальной хроматографической колонке могут происходить следующие виды диффузии а) молекулярная диффузия, обусловленная тепловым движением молекул б) вихревая диффузия, вызываемая завихрением газа вокруг зерен насадки в) недостаточная скорость массопередачи из газовой фазы к поверхности неподвижной жидкости (в ГЖХ) или к поверхности твердого адсорбента (в ГАХ), обусловленное внешней диффузией, или замедленной внешнеди( узионной массопередачей недостаточная скорость миграции молекул адсорбированного вещества с поверхности неподвижной фазы внутрь неподвижной фазы, обусловленное замедленной внутренней диффузией или замедленной внутридиффузионной массопередачей. Последние два вида диффузии направлены поперек [c.52]

    Если неподвижная фаза — жидкость, нанесенная на поверхность инертного носителя, то говорят о распределительной хроматографии. Хроматография в газовой фазе, особенно вариант газо-жидкостной распределительной хроматографии, благодаря своей эффективности получила широкое применение в анализе сложных смесей газов и паров. Газо-жидкостная распределительная хроматография обладает рядом преимуществ перед газо-адсорбционной хроматографией. В случае газо-жидкостной хроматографии получают узкие, почти симметричные прояйительные полосы (пики), что способствует лучшему разделению компонентов и сокращению времени анализа. Это можно наблюдать на примере разделения углеводородов. Если методом адсорбционной хроматографии разделяют главным образом низкокипящие газообразные соединения, то с помощью газовой распределительной хроматографии можно анализировать почти все вещества, обладающие хотя бы незначительной летучестью, подобрав соответствующую неподвижную жидкую фазу и условия разделения. [c.98]

    Односекторный вращающийся фильтр. Вращающийся фильтр фирмы Берд-Янг , представленный на рис. 18, не имеет подразделенных внутренних секторов и секционных каналов и труб. Поэтому под вакуумом находится почти весь внутренний объем фильтра (рис. 19). У низа барабана расположен с весьма небольшим зазором от внутренней поверхности барабана неподвижный продувочный башмак, при помощи которого на небольшую продольную полосу по образующей барабана подводится пульсирующий поток сжатого воздуха для удаления. непешки. У верха барабана с малым зазором расположен второй башмак для удаления промывной жидкости в случае необходимости промывки лепешки- Труба для отвода фильтрата выступает по оси барабана и спускается до низа его. Дополнительные детали о конструкции этого фильтра опубликованы в литературе [21]. Поскольку в этом фильтре отсутствуют внутренние секторы, медленно удаляющие фильтрат, он может вращаться значительно быстрее, чем обычныймногосекторный фильтр. Поэтому на барабане фильтра образуется весьма тонкая лепешка, удаляемая пульсирующей подачей [c.89]

    Если мы имеем в распоряжении набор порошков одного и того же кристаллического веш ества, отличающихся только по порядку величины дисперсности своих частиц, и получим от всех этих порошков дебаеграммы в неподвижной камере, то сравнение соответствующих линий на различных дебаеграммах приведет нас к следующим выводам дебаев-ские линии порошка, размер частиц которого составляет около 10 л и выше, характеризуются пятнистым строением, причем пятнышки тем больше по величине и тем значительнее разделены между собой, чем больше размеры кристалликов линии, соответствующие частицам размера от 10 х до 0.1 (Л, будут сплошными и четкими, причем ширина их обусловливается преимущественно условиями съемки для кристаллов размером меньше 0.1[а наблюдается значительное расширение линий за счет диффракционного эффекта, специфического для частиц малых размеров. С переходом к еще более мелким частицам линии настолько расплываются, что превращаются в полосы, и дебаеграмма начинает напоминать рентгенограмму жидкости [c.30]

    При анализе газов в колонку сначала вводится анализируемая смесь, а затем пропускается непрерывный поток газа-носителя. Компоненты анализируемой смеси растворяются в неподвижной жидкости. Газ-носитель вытесняет компоненты анализируемой смеси и передвигает их вдоль неподвижной фазы, где они вновь растворяются и опять вытесняются газом-носителем, до тех пор пока не покинут колонку. Поскольку растворимость компонентов анализируемой смеси в неподвижной жидкости неодинакова, скорости их нередвин<е-ния различны, что благоприятно сказывается на разделении. С наибольшей скоростью вдоль колонки передвигается компонент, растворимость которого в неподвижной жидкости минимальна. Хроматограмма такого процесса представляет собой отдельные полосы выделенных компонентов, разделенные зонами чистого газа-носителя. [c.192]

    При рассмотрении диффузии в неподвижной фазе и обсуждении гфоцессов распределения жидкость - жидкость диапазон вязкостей и молекулярных весов намного шире и их значения меняются от обычных величин до значений, соответствующих очень вязким полимерным материалам. Если предположить, что неподвижная фаза имеет молекулярный вес 10 ООО и вязкость ее примерно равна 1000сП, то очень приближенно можно оценить, что диффузия в этом случае составляет только одну сотую диффузии в подвижной фазе. Таким образом, этот фактор ничтожно мало влияет на размывание полосы. [c.36]

    Важной характеристикой хроматографического разделения является размывание зоны компонента при его движении по колонке. В момент ввода образец занимает узкую полосу в верхней части колонки. При движении по колонке эта полоса размывается за счет неодинаковой средней скорости молекул одного и того же компонента, обусловленной различными факторами. Так, вихревая диффузия вызьшает более медленное перемещение молекул в узких каналах, чем в широких. Другим фактором является массоперенос в подвижнойфазе.Жидкость вблизи твердых частиц движется медленно, а в центре струйки между частицами - быстро. В результате молекулы компонента за равное время проходят разный путь центральные перемещаются быстрее, а находящиеся вблизи частиц - медленнее. Вносят свой вклад в размывание полосы и массоперенос в застойных зонах подвижной фазы, обусловленный диффузией молекул компонента в поры частиц неподвижной фазы, а также массоперенос в стационарной фазе, определяемый прониканием молекулы в глубь частицы. Чем медленнее движется компонент по колонке, тем больше размьшание. На рис. 1 приведена хроматограмма, иллюстрирующая разделение трехкомпонентного образца. Каждый компонент характеризуется временем удерживания шириной полосы или пика tw. Чем больше различие в компонентов, тем легче они разделяются, и чем меньше Гц,, тем лучше разделение. [c.6]

    Описанная модель дает наглядное представление о расширении полосы при прохождении ее вдоль слоя сорбента. Однако недостатком модели является то, что происходящий процесс является периодическим, в то время как для хроматографии характерно непрерывное перемещение подвижной фазы. Поэтому для расчета целесообразно использовать модель, представляющую собой систему последовательно соединенных барботеров единичного объема, оавные части которых у. заполнены неподвижной жидкостью Поток газа А, содержащего определяемый компонент В, пропускается через барботеры непрерывно, причем выполняются условия идеальной хроматографии, т. е. допускают, что скорость массопередачи между фазами весьма велика. [c.46]

    Влияние природы неподвижной фазы на размытие полос. Выше основное внимание уделялось подбору неподвижной жидкости, обеспечивающей необходимую селективность, и не учиты- [c.96]

    Если в газо-жидкостной хроматографии адсорбционная способность твердой фазы является, как правило, вредным фактором, то в газо-адсорбционной хроматографии она представляет собой основное свойство сорбента, обеспечивающее разделение компонентов анализируемой смеси. Выше уже рассматривались преимущества и недостатки газо-адсорбционной хроматографии. Использование твердого адсорбента, обладающего обычно большей, чем неподвижная жидкость, сорбционной емкостью, позволяет разделять низкокипящие вещества при комнатной и даже повышенной температуре. Кроме того, используя вытеснительный метод анализа, можно добиться сужения полос микропримесей сильно сорбирующихся веществ и тем самым повысить чувствительность метода. Наконец, устойчивость адсорбента при высокой температуре позволяет, во-первых, анализировать высококипящие соединения и, во-вторых, работать с высокочувствительными детекторами, не опасаясь понижения их чувствительности вследствие летучести неподвижной жидкости. [c.113]

    Основы теории жидкостной экстракции (см. разд. 23-4) могут служить. чогическим введением в хроматографию. Жидкостная хроматография в большой мере аналогична жидкостной экстракции. Если одну из жидкостей сделать неподвижной путем диспергирования на твердом теле с большей поверхностью и поместить в качестве насадки в колонку, а другую жидкость пропускать через колонку, в принципе получим вариант непрерывной противоточной экстракции. Главное отличие заключается в том, что в данном случае нет физических дискретных стадий равновесия или тарелок. Выводы, сделанные в разд. 23-3 и 23-4 относительно размывания полос и пиков и разделения, применимы в большой степени в хроматографии. [c.498]


Смотреть страницы где упоминается термин Жидкость неподвижная полос: [c.179]    [c.128]    [c.472]    [c.115]    [c.115]    [c.521]    [c.547]    [c.6]   
Курс газовой хроматографии (1967) -- [ c.92 ]

Курс газовой хроматографии Издание 2 (1974) -- [ c.96 ]




ПОИСК







© 2025 chem21.info Реклама на сайте