Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбционная спектроскопия применение

    Применение метода абсорбционной спектроскопии не ограничивается только определением концентраций веществ. В результате поглощения излучения энергия систем з1 меняется настолько незначительно, что это не приводит обычно к нарушению целостности молекул поглощающего вещества. Однако в результате смещения химического равновесия в растворе под влиянием различных факторов его поглощающие свойства могут изменяться весьма значительно. На этом основано применение метода абсорбционной спектроскопии для изучения равновесий в растворах, реакций гидролиза и полимеризации, определения состава комплексных соединений, их констант устойчивости и т. п. . В данной главе рассматривается только метод абсорбционной спектроскопии как один из методов количественного анализа. [c.458]


    В практике анализа воздуха на содержание вредных примесей широко применяются методы абсорбционной спектрометрии, флуоресцентные методы, газовая хроматография, атомно-абсорбционная спектроскопия, нейтронно-активационный анализ, ядерный магнитный резонанс, масс-спектроскопия [14]. В промышленных масштабах производятся автоматические газоанализаторы, обеспечивающие непрерывный контроль уровня загрязнения атмосферы [4, 14, 15]. В СССР получили широкое применение газоанализаторы ГПК-1 и Атмосфера , предназначенные для непрерывного контроля содержания 502 в атмосфере и в воздухе производственных помещений. Разработаны специальные методы измерения скорости осаждения пыли, сажи и других аэрозолей [4, И]. Инструментальные методы оперативного контроля загрязненности атмосферы позволяют принимать действенные меры регулирования и ограничения промышленных выбросов в воздух. [c.25]

    Абсорбционная спектроскопия в ультрафиолетовой и видимой областях — первый спектральный метод, нашедший широкое применение для исследования органических соединений. Хотя в настоящее время этот вид спектроскопии уступил лидирующее положение другим физическим методам определения строения молекул, достоинства его и сейчас не вызывают сомнений, а в будущем, возможно, даже возрастут как в связи с неуклонным совершенствованием аппаратуры, расширяющим исследуемый спектральный диапазон, так и вследствие прогресса в теории спектроскопии. [c.45]

    В работе [62, с. 39—46] описано применение абсорбционной спектроскопии в инфракрасной области спектра (диапазон 650—1000 см ) для анализа смеси [c.134]

    Назовите область применения метода атомно-абсорбционной спектроскопии. [c.137]

    Можно рекомендовать — для определения следовых количеств металлов рассматриваемым методом — их концентрирование вместо нагрева путем низкотемпературной (ниже 0°С) сушки, что уменьшает потери летучих металлов и допускает применение ме-тод 1Ки для любых сочетаний элементов [269]. Для обеспечения единства измерения содержания микроэлементов в нефтях и нефтепродуктах предложена аттестация стандартных образцов методом атомно-абсорбционной спектроскопии с оптимизацией условий анализа [270]. [c.146]

    Д.29). Можно также считать, что высокочастотная плазма успешно конкурирует с другими источниками возбуждения эмис-,сии (например, таким экзотическим пламенем, как смесь ( N)2Ч-N20). Этот метод имеет также преимущества перед методом пламенной атомно-абсорбционной спектроскопии (ПААС), Но предел обнаружения ААС с электротермическими источниками атомизации (например, с применением графито- [c.416]


    Абсорбционная спектроскопия парамагнитного резонанса является методом, который может быть применен к молекулам, содержащим атомы или ионы с неспаренными электронами. Магнитные моменты здесь примерно в 2000 раз больше ядерных магнитных моментов и поэтому вызывают поглощение энергии в микроволновой области (обычно в области длин волн от 4 до 1 см). Это приводит к изменению ориентации магнитного момента при переходе из одного разрешенного положения в другое. Истинная поглощенная частота зависит от магнитного поля, и, следовательно, путем изменения поля поглощение может быть определено по некоторой микроволновой частоте. [c.197]

    ПРИМЕНЕНИЕ МЕТОДА АБСОРБЦИОННОЙ СПЕКТРОСКОПИИ ДЛЯ ИЗУЧЕНИЯ РАВНОВЕСИЙ В РАСТВОРАХ [c.90]

    Методом атомно-абсорбционной спектроскопии определяют ванадий, никель, медь, железо, молибден, кобальт. Выявлены различия в определении этим же методом концентрации никеля (в виде никель-органических соединений) в зависимости от лиганда. Форма существования никеля в нефтях и применение различных лигандов для его выделения из нефтей или концентрирования влияют на его определение. [c.84]

    Однако более широко для газохроматографического анализа используют летучие комплексы органических соединений металлов [18, 19, 82]. Основным достоинством газохроматографического анализа летучих соединений металлов является возможность анализа следов металлов, реализуемая при использовании ЭЗД и микроволнового эмиссионного детектора. При использовании детекторов этого типа газохроматографические методы сравнивали с такими методами, как нейтронно-активационный анализ, атомно-абсорбционная спектроскопия и некоторые другие. Для характеристики области применения метода приведем данные анализа следов элементов в виде летучих комплексов (табл. 1-3 составлена на основании литературных данных). [c.43]

    Аналитическое применение абсорбционной спектроскопии в УФ/вид.-области [c.156]

    НИЯ, специфических для этого металла, судят о его концентрации в пробе [282]. Сводка данных о длине волн, соответствующих специфичным полосам поглощения некоторых металлов, а также 6 чувствительности определения последних помещены в табл. 34. Как показывает таблица, наибольшей чувствительностью обладает, метод атомно-абсорбционной спектроскопии в применении к анализу хрома и марганца. Большим числом специфических полос, помимо железа, характеризуются также вольфрам, титан и др. [c.132]

    В некоторых случаях для определения воды в дистилляте применяли следующие независимые методы анализа титрование реактивом Фишера [245, 246, 257, 278], реакцию с хлористым ацетилом [185] или с нитридом магния [254] и спектроскопию Б ближней ИК-области спектра [55]. Такой подход весьма желателен при построении градуировочного графика для данной конкретной методики дистилляции. При этом можно косвенным образом установить происходит ли при дистилляции отгонка других легколетучих веществ, и переходят ли эти вещества в водный слой дистиллята. При изучении возможности применения метода дистилляции для анализа новых объектов, а также при оценке надежности уже имеющихся аналитических методик необходимо проводить прямое определение содержания в водном слое и других компонентов. Часто достаточно определить общее содержание углерода. Однако в тех случаях, когда это возможно, рекомендуется прямое определение соединений различных классов. Функциональные группы могут быть обнаружены с помощью соответствующих химических реакций, методом абсорбционной спектроскопии и т. д. При анализе таких дистиллятов возможно применение растворителей, образующих с водой гомогенные бинарные или тройные азеотропные смеси. [c.269]

    Возможность использования атомно-абсорбционной спектроскопии для определения большинства элементов периодической системы, высокая селективность и чувствительность, точность и быстрота измерений, а также доступность автоматизации определений способствовали широкому применению этого метода не только в металлургической, горной и химической промышленности (где традиционно применяется инструментальный анализ), но и в мало освоенных аналитиками областях в сельском хозяйстве, экологических исследованиях, пищевой промышленности, биохимии и медицине. [c.371]

    Границы аналитической исследовательской работы во многих отношениях не определены точно. Например, органики-синтетики могут получить побочный продукт, который окажется селективным колориметрическим реагентом. Фундаментальное исследование в области химии или физики может привести к появлению нового инструментального метода анализа. Короче говоря, любые химические или физические исследования могут дать результаты, имеющие потенциальное значение для аналитики, если ученый, занятый этой работой, может понять или предсказать возможные применения в аналитической химии. Например, метод атомно-абсорбционной спектроскопии был предложен и развит физиками, интересовавшимися атомными спектрами. [c.546]


    Атомно-абсорбционная спектроскопия является быстро развивающейся областью инструментального химического анализа. Это обусловлено некоторыми ее преимуществами. Основные из них возможность определения с достаточно высокой чувствительностью и точностью одного элемента в присутствии большого числа других, экспрессность и простота анализа. К настоящему времени разработаны и успешно применяются атомно-абсорбционные методы определения приблизительно 60 элементов в самых различных объектах. Метод атомной абсорбции находит широкое применение в геохимии. По микроэлементам можно судить о типах, генезисе и путях миграции нефтей. [c.286]

    Большие возможности, которые открывает применение ФА для анализа данных, полученных при исследовании смесей, и решения задач разделения в более общем смысле, обеспечили этому методу большую популярность. Широкое применение ФА находит при обработке данных, полученных с использованием масс-спектрометрии [20, 36—38, 42—45], абсорбционной спектроскопии [21, 27, 28, 30, 46] и люминесценции [47, 48]. Систематизация многих важнейших аспектов применения ФА в химии приведена в очень полезной для пользователей монографии [49], хотя полного обзора всех сторон ФА книга не дает. [c.80]

    Проведение реакций с использованием реагентов, сорбированных на носителях, обладает многими практическими преимуществами. В случае неорганических реагентов часто трудно подобрать растворитель, в котором растворяются и реагент, и органический субстрат для нанесенного реагента можно использовать любой инертный растворитель, который растворяет субстрат. Выделение продукта легко выполняется фильтрованием и упариванием. При применении токсичных таллиевых реагентов важным фактором является прочное удерживание таллия на подложке по окончании реакции. После фильтрования таллий не удается обнаружить методом атомной абсорбционной спектроскопии ни в фильтрате, ни Б продукте даже при проведении реакции в масштабе нескольких молей [89]. Тем самым устраняется проблема ликвидации токсичных отходов, а в определенных условиях становится возможной и регенерация реагента. По этим причинам применение нанесенных реагентов в настоящее время привлекает внимание многих фармацевтических фирм, занимающихся тонким промышленным синтезом. [c.800]

    Эта книга должна помочь спектроскописту и химику-аналитику понять принципы атомно-абсорбционной спектроскопии, а также ознакомиться с опытом применения метода. [c.7]

    В работе [263] показано, что для экстракции металлов (перед их определением атомно-абсорбционной спектроскопией) лучше применять смесь 80 % бензола и 20 % толуола, нежели ксилол (в последнем при стоянии происходит выпадение твердого осадка). Здесь же обсуждены вопросы приготовления стандартов, автома--тической дозировки проб, загрязнения металлами из чужеродных продуктов (масел механизмов при нефтедобыче и транспортировке промывных вод и т. д.). Методом атомно-абсорбционной спектроскопии определялись ванадий, никель, медь, железо, молибден, кобальт. Выявлены различия в определении этим же методом концентрации никеля в виде никельорганических соединений в зависимости от лиганда. Форма существования никеля в нефтях и применение различных лигандов для его выделения из нефтей или концентрирования влияют на его определение [268]. [c.146]

    Для идентификации многокомпонентных органических систем обычно используется сочетание нескольких методов, например, фракционирование методов ЯМР-, УФ-, ИК -спектроскопии и хроматографии, масспектрометрии [11,12] Существенным недостатком известных методик является трудоемкость, длительность и неоднозначность результатов анализа. До последнего времени применению методов электронной абсорбционной спектроскопии препятствовало отсутствие теории электронных спектров таких систем, главным образом из- за их сложности ( рис 4 1). Для исследования таких объектов требуются новые методы. Предлагаемый в данной работе подход относится к ( ю-номенологическим методам, т к. система, поглощающая излучение, рассматривается как единое целое, а максимумы спектров и электронные переходы во внимание не принимаются. Такое необычное направление в электронной спектроскопии определено нами, как электронная феноменологическая спектроскопия (ЭФС). Вещество изучаегся как единое це юе, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных групп или компонентов системы. Известно, что электронное строение веществ определяет его физико-химические свойства [13]. В свою очередь, электронные спектры также определяются конфигурацией электронных оболочек [14]. [c.64]

    Среди лазеров на основе органических соединений с оптической накачкой наиболее глубоко изучены лазеры на электронных переходах в сложных органических молекулах. В результате техника ЛОС достигла весьма высокого уровня развития, необходимого при использовании таких сложных устройств, как лазеры, а ценные свойства ЛОС обеспечили им очень широкий круг применений в различных физико-химических исследованиях. Применение ЛОС прежде всего в спектроскопии, фотохимии, в исследованиях селективного воздействия лазерным излучением на вещество привело к возникновению или существенному развитию принципиально новых методов исследования, таких как двухфотонная спектроскопия, свободная от доплеровского уширения, многофотонная резонансная ионизационная спектроскопия, спектроскопия когерентного антистоксова комбинационного рассеяния, внутрире-зонаторная абсорбционная спектроскопия и др. Рассмотрению [c.197]

    В 1955 г. Уолш опубликовал свою первую статью по атомноабсорбционной спектроскопии. В настоящее время в лабораториях всего мира используются 5000 атомно-абсорбционных приборов. Несомненно, ни один из аналитических методов не развивался так быстро. Было бы неверным утверждать, что атомная абсорбция заменила какие-то аналитические методы. Тем не менее применение пламенной эмиссионной спектроскопии и полярографии для определения металлов значительно сократилось в результате развития атомно-абсорбционной спектроскопии. Следует отметить также, что 25% всех атомно-абсорбционных приборов используются в лабораториях, в которых ранее приборы не применялись совсем. Другими словами, атомно-абсорбционный анализ заменяет и традиционные мокрые методы химического анализа. [c.7]

    Методы абсорбционной спектроскопии ввиду их большой чувствительности и избирательности широко применяются при решении многих задач аналитической химии. Эти методы используют при контроле производства и анализе готовой продукции ряда отраслей промышленности химической, металлургической, металлообрабагы-ваюш,ей, в почвенном, биохимическом анализе, а также для определения малых и ультрамалых количеств примесей в веществах особой чистоты (10 —10" %). Для определения больших количеств веществ с точностью, не уступающей гравиметрическим и тит-риметрическим методам, а также при анализе многокомпонентных систем применяют различные варианты дифференциальной спектро-фотометрии. При автоматизации контроля производства рационально использовать метод спектрофотометрического титрования. Методы абсорбционной спектроскопии остаются труднозаменимыми при анализе объектов, содержащих ядовитые летучие соединения, что делает ограниченным применение атомно-абсорбционного метода и методов эмиссионной спектроскопии. Особенно большое значение имеют методы абсорбционной спектроскопии для исследования процессов комплексообразования и получения количественных характеристик комплексных соединений. [c.3]

    Сравните возможности и области применения термоопгической спектроскопии и атомно-абсорбционной спектроскопии. [c.362]

    Применение в аточно-абсорбционной спектроскопии беспламенных атомизаторов, как графитовая печь, графитовая па-лочда и других, позволяет получить более высокую чувствительность и точность анализа. Этот способ атомизации проб в графитовой кювете предложен давно /9/ и обладает рядом принципиальных преимуществ перед пламенем по некоторын аналитическим характеристикам. При анализе нефтепродуктов с использованием беспламенного метода точность определения ванадия не зависит от типа металлорганическоГ о соединения, употребляемого в качестве эталона, и от характера пробы. Благодаря проведению анализа в инертной среде, отделению стадии атомизации от стадий сушки и термического разложения устраняется влияние вязкости и других физико-химических свойств на результаты анализа. [c.68]

    Наиболее распространенным методом определения золообразующих и следовых элементарных веществ из растворов угля стала атомно-абсорбционная спектроскопия [27, 28], отличающаяся высокой точностью и селективностью. Проанализированы в области предпочтительного применения атомно-абсорбционной спектроскопии и индукционной плазмы и относительные преимущества этих методов [29]. В некоторых случаях предпочтительно применение не атомно-абсорбционной, а атомно-флуоресцентной спектроскопии, поскольку в этом методе можно использовать источники света большей интенсивности. При равной воспроизводимости это обеспечивает для некоторых элементов kg, Ли, В1, Сс1, Со, Сг, Hg, Мд, 2п) более низкие пределы обнаружения [27]. [c.67]

    Указания на литературу по применению абсорбционной спектроскопии в ультрафиолетовой области для целей анализа имеются также в обзорах Михайленко [1], Коггешела [15, 19], Розенбаума [48-50], руководствах Чулановского [2], Меллона [40] и Брода [9]. Обзоры Люиса и Колвина [38] и Фергюсона [20 посвящены связи между ультрафиолетовыми спектрами поглощения и строением молекул и также содержат значительную библиографию. [c.376]

    Приведенные примеры отнюдь не исчерпывают всех возгложных применений публикуемого атласа спектров и возможностей абсорбционной спектроскопии в ультрафиолете. [c.400]

    Автоматизация многих отраслей металлургической промышленности, где для получения чистых и сверхчистых материалов широко используются чистые инертные газы, автоматизация технологического процесса самого газового производства требуют создания простых и быстрых методов контроля состава газовой среды. Методы должны быть использованы в цеховых условиях и обеспечивать достаточно высокую точность и чувствительность анализа. Этим требованиям отвечают так называемые экспрессные методы спектрального анализа газов. Оказывается, во многих случаях, особенно при анализе бинарных смесей газов, сложный спектральный аппарат может быть заменен подходящим монохроматическим фильтром Этот прием особенно широко используется в абсорбционной спектроскопии (см. гл, VI) и в некоторых случаях уже стал находить применение в эмиссионном спектральном анализе металлов. Возможность осуществления потока газа значительно упрощает вакуумную установку В свою очередь, выделение излучения соответствующей длины волны с помощью монохроматических фИ"1Ьтров благодаря увеличению светового потока позволяет использовать более простые фотоэлектрические установки р - [c.218]

    Изучение прототропных перегруппировок полиеновых жирных кислот началось с наблюдения перегруппировки при омылении природных высыхающих масел [150] и нашло аналитическое применение в том, что при сравнительно мягкой щелочной обработке образуются сопряженные хромофоры, легко определяемые абсорбционной спектроскопией [151]. Большинство обычных примеров относится к линолевой кислоте, которая при мягкой щелочной обработке изомеризуется в смесь октадека-г ис-О-тракс-11-диеновой и октадека-троис-10- ис-12-диеповой кислот, причем обе можно элаиди-низнровать иодом в транс-формы  [c.236]

    После работ Кирхгофа метод атомной абсорбции широко используется астрономами для определения металлов, присутствующих в атмосфере звезд. Известны сообщения о нескольких отдельных экспериментах, связанных с химическим анализом, главным образом, с определением ртути [13]. Однако широкое применение атомно-абсорбционной спектроскопии для химического анализа стало возможным только после работ Уолша, который разработал инструментальный метод, дающий оптимальные результаты. Примерно в это же время Алкемаде и Милатц [14, 15] предложили атомно-абсорбционный спектрофотометр, в котором в качестве источника и абсорбционной ячейки использовали два пламени, [c.15]


Смотреть страницы где упоминается термин Абсорбционная спектроскопия применение: [c.147]    [c.83]    [c.7]    [c.7]    [c.222]    [c.11]    [c.216]    [c.218]    [c.221]    [c.221]    [c.222]    [c.223]    [c.223]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.143 , c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбционная спектроскопия

ЭПР-спектроскопия применение



© 2025 chem21.info Реклама на сайте