Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свет квантовая теория

    Теплоемкость газов в свете квантовой теории [c.444]

    В связи с этим интересно более подробно остановиться на сопоставлении теплоемкости со спектром механических потерь [О Рейли, Караш (1966)]. Такое сопоставление кажется на первый взгляд вполне обоснованным, так как при анализе спектра механических потерь часто используются те же выражения, что и в теории теплоемкости. В частности, при объяснении наблюдаемых при повышении температуры механических потерь говорят о размораживании различных видов механического движения . Однако на самом деле здесь речь идет о двух различных по своей природе явлениях, непосредственное сравнение которых невозможно. Это особенно отчетливо видно в свете квантовой теории полей [ср. Баур (1968)]. [c.120]


    Сейчас мы достоверно знаем в свете квантовой теории и экспериментальных данных, что при абсолютном нуле теплоемкость системы равна нулю . Тогда и изменение теплоемкости при реакции АСр равно нулю при абсолютном нуле  [c.395]

    В 1889 г. А. Г. Столетов открыл и исследовал явление, получившее название фотоэффекта. Заключается это явление в том, что под действием света из атомов металла вылетают электроны. Свет выбивает электроны из атомов, подобно тому как градины выбивают зерна из колосьев. Объяснить явление фотоэффекта оказалось возможным, только приняв положение о том, что свет является потоком частиц —- фотонов. Исходя из этого положения удобно рассматривать явление испускания и поглощения света. Квантовая теория излучения Планка хорошо сочетается с представлением о свете, как о потоке частиц, каждая из которых является носителем определенной минимальной для данного вида излучения порции — кванта энергии. [c.15]

    Смысл этих чисел выявляется только в свете квантовой теории. [c.58]

    Существенный шаг в развитии представлений о строении атома сделал в 1913 г. Нильс Бор, предложивший теорию, объединяющую ядерную модель атома с квантовой теорией света. [c.63]

    Строение электронной оболочки атома по Бору. Как уже указывалось, в своей теории Нильс Бор исходил из ядерной модели атома. Основываясь иа положении квантовой теории света о прерывистой, дискретной природе излучения и на линейчатом характере атомны.х спектров, ои сделал вывод, что энергия >лектронов в атоме не может меняться непрерывно, а изменяется скачками, т. е. дискретно. Поэтому в атоме возможны не любые энергетические состояния электронов, а лишь определенные, разрешенные состояния. Иначе говоря, энергетические состояния электронов в атоме квантованы. Переход из одного разрешенного состояния в другое совершается скачкообразно и сопровождается испусканием или поглощением кванта электромагнитного излучения. [c.66]

    Квантовая теория света оперировала понятием светового кванта, который обладает свойства ми частицы. Эта частица получила название фотона. Квантовой теории были чужды понятия волны и колебаний. Она успешно- объясняла возникновение и поглощение света, но не могла объяснить явлений, связанных с прохождением света через вещества. Такое положение сложилось в физике к двадцатым годам текущего века. [c.44]

    Квантовая теория света. В 1900 г, М, Планк показал, что способность нагретого тела к лучеиспусканию можно правильно количественно описать, только предположив, что лучистая энергия испускается и поглощается телами не непрерывно, а дискретно, т, е. отдельными порциями — квантами. При этом энергия Е каждой такой порции связана с частотой излучения соотношением, получившим название уравнения Планка  [c.41]


    Квантовая теория света, развитая Эйнштейном, смогла объяснить не только свойства фотоэлектрического эффекта, но и закономерности химического действия света, температурную зависимость теплоемкости твердых тел и ряд других явлений. Она оказалась чрезвычайно полезной и в развитии представлений о строении атомов и молекул. [c.43]

    Пусть имеются два атома благородного газа. Если рассматривать статическое распределение зарядов в них, то эти атомы не должны влиять друг на друга. Но опыт и квантовая теория говорят о том, что в любых условиях (в том числе и при абсолютном нуле температуры) содержащиеся в атоме частицы находятся в непрерывном движении. В процессе движения электронов распределение зарядов внутри атомов становится несимметричным, в результате чего возникают мгновенные диполи. При сближении молекул движение этих мгновенных-диполей перестает быть независимым, что и вызывает притяжение. Взаимодействие мгновенных диполей — вот третий источник межмолекулярного притяжения. Этот эффект, имеющий квантовомеханический характер, получил название дисперсионного эффекта, так как колебания электрических зарядов вызывают и дисперсию света — различное преломление лучей света, имеющих различную длину волны. Теория дисперсионного взаимодействия была разработана Лондоном в 1930 г. Из изложенного следует, что дисперсионные силы действуют между частицами любого вещества. Их энергия приближенно выражается уравнением [c.241]

    И распространяющихся в пространстве со скоростью света. Такое радикальное изменение во взглядах, которое было предложено вначале Планком, а потом Эйнштейном, не могло быть принято без основательного экспериментального доказательства, подтверждающего эти новые идеи. Экспериментальное доказательство было получено, и тогда квантовую теорию стало невозможно опровергнуть. [c.22]

    Сущность явления КРС наиболее просто объясняется квантовой теорией света. Любое изменение частоты света при прохождении его [c.50]

    Еще до появления планетарной модели атома был отвергнут тезис классической электромагнитной теории света о непрерывности излучения. Тезису, гласящему, что скачков не бывает, а есть только непрерывность, с полным правом можно противопоставить антитезис, по смыслу которого в действительности изменение всегда совершается скачками, но только ряд мелких и быстро следующих один За другим скачков сливается для нас в один непрерывный процесс (Плеханов). Таким антитезисом явилась квантовая теория (Планк, 1900 г.). [c.78]

    Вещества находятся в кристаллическом состоянии при температурах от О К до некоторого значения зависящего от давления (однако, чтобы заметно изменить Тцл, нужны весьма высокие давления). Температура плавления для различных веществ меняется в широких пределах в зависимости от характера взаимодействий в системе. Единственное вещество, которое при атмосферном давлении остается жидким вплоть до абсолютного нуля, — гелий, особые свойства которого находят объяснение в свете квантовой статистической теории. Кристаллизация гелия происходит только при высоком давлении (при р = 2,5 МПа Г р ет = 1,5 К). [c.310]

    Для объяснения законов распределения энергии в спектрах нагретых твердых тел Планком в 1900 г. была развита квантовая теория. Планк допускал, что энергия излучается атомами не непрерывно, а порциями — квантами (фотонами). Энергия кванта пропорциональна частоте излучаемого света  [c.59]

    Эта формула неудобна для расчетов, потому что величины ц,од , как правило, неизвестны. Чтобы преобразовать уравнение (1.53) к виду, пригодному для вычислений, Ф. Лондон воспользовался результатами квантовой теории показателя преломления света, описывающей дисперсию показателя преломления, т. е. зависимость его от частоты колебаний волн света. Отсюда и возник термин дисперсионные  [c.26]

    Хотя фотоэффект открыт А. Г. Столетовым в 1888 г., но был объяснен только в начале XX в. на основании квантовой теории света, разработанной М. Планком. Простейший фотоэлемент — селеновый он встречается наиболее часто. Состоит из железной пластинки, покрытой слоем селена (полупроводника). Слой селена покрыт [c.464]

    Квантовая теория эффекта комбинационного рассеяния очень проста. Как показано на рис. XXV.2, возбужденная в результате облучения молекула может вернуться не на основной уровень, а на возбужденный (например, в отношении колебательной энергии). При этом, как видно из левых стрелок рис. XXV.2, частота испускаемого света меньше частоты рассеиваемого. Если в момент облучения молекула была в возбужденном состоянии, то, как показывают правые две стрелки (см. рис. XXV.2), частоты испускаемого света больше частоты первоначального. [c.668]

    Поскольку зависит от скорости, то отсюда следует, что вероятность превращения увеличх вается с возрастанием кинетической энергии испускаемой а-частицы. Поэтому можно считать, что ядро обладает избытком энергии, а эмпирическое соотношение между /си у указывает на то, что чем больше энергия, которую должно выделить ядро, тем больше вероятность его распада. Истолкование этих данных трудно провести методами классической теорип, по оии являются понятными в свете квантовой теории. Допустим, что а-частицы в ядрах удерживаются высоким потенциальным барьером. Согласно классической механике, через барьер могут пройти только те частицы, [c.208]


    Излучение энергии телом связано с колебательными процессами внутри молекул, обусловленными главным образом температурой тела. Перенос лучистой энергии может быть рассмотрен с позиций электромагнитной и квантовой теорий излучения. Согласно электромагнитной теории энергия излучения передается электромагнитными волнами со скоростью света. Квантовая теория рассматривает перенос лучистой эрер-гии в виде дискретного процесса, связанного с фотонами. Энергия, переносимая каждым фотоном, равна ку, где к — постоян- [c.133]

    Квантовая теория света. В 1900 г. Планк показал, что спо-собн<х ть нагретого тела к лучеиспусканию можно правильно [c.63]

    Мз квантовой теории света следует, что фотон неспособен дро биться он взаимодейстпует как целое с электроном металла, вы бивая его из пластинки как целое он взаимодействует и со светочувствительным веществом фотографической пленки, вызывая ес потемнение в определенной точке, н т. д. В этом смысле фотон ведет себя подобно частице, т. е. проявляет к о р н у с к у л я р ы с свойства. Однако фотон обладает и волновыми свойствами это проявляется в волновом. характере распространения света, в способности фотона к интерференции и дифракции. Фотом отличается от частицы в классическом понимании этого термина тем, что его точное положение в пространстве, как и точное положение любой волны, не может быть указано. Но он отличается и от классической волны — неспособностью делиться на части. Объединяя в себе корпускулярные и волновые свойства, фотон не является, строго говоря, ни частицей, ни волной, — ему присунда корпускулярно-волновая двойственность. [c.66]

    Ф. X. Гроттус еще в 1817 г. установил, что химически активен лишь тот свет, который поглощается реакционной средой. К. А. Тимирязевым было показано (1875), чго количество продукта, полученного при данной фотохимической реакции, пропорционально количеству поглощенной световой энергии. Эти соотношения были подвергнуты разностороннему изучению (1907—1910) П. П. Лазаревым, показавшим, что количество разложившегося вещества пропорционально количеству поглощенной- энергии. В дальнейшем теория фотохимических реакций развивалась на основе квантовой теории света. [c.500]

    Во-вторых, Бор объяснил происхождение и характер спектра водорода. Давно было известно, что атомы водорода, активированные каким-либо способом (нагреванием или действием электрического поля), излучают свет. Спектр этого излучения состоит из воли строго определенной длины, т. е. спектр излучения не с1 лошной, а линейчатый. Согласно квантовой теории света это означает, что возбужденный атом водорода излучает кванты, об- [c.25]

    Теория поглощения света не будет здесь рассмотрена более подробно, так как ее можно трактовать только с помощью квантовой теории и волновой механики. Однако в качестве рабочей гипотезы и для понимания этого явления химиком-органиком можно с успехом использовать теорию мезомерии. В соответствии с этой теорией красителем является ненасыщенное соединение, которое можно описать с помощью ряда мезомерных предельных структур. Поглощая световую энергию, непрочно связанные валентные электроны переходят на более высокий энергетический уровень, н, таким образом, молекула красителя переходит в возбужденное состояние. Чем большее число мезомерных структур участвует в основном состоянии, тем легче обычно происходит возбуждение молекулы и тем глубже окрашено соединение. В соответствии с этим все окрашенные вещества должны были бы быть неустойчивыми. Однако благодаря тому, что ненасыщенные группы, введенные в ароматические и хииоидные системы, могут стабилизоваться, в результате сопряжения и образования водородны.ч связей, химикам удалось получить чрезвычайно устойчивые красители. [c.597]

    КВАНТОВАЯ МЕХАНИКА - физическая теория, изучающая общие закономерности движения и взаимодействия микрочастиц (элементарных частиц, атомных ядер, атомов и молекул) теоретическая основа современной физики и химии. К. м. возникла в связи с необходимостью преодолеть противоречивость и недостаточность теории Бора относительно строения атома. Важнейшую роль в разработке К. м. сыграли исследования М. Планка, А. Эйнштейна, Н. Бора, М. Борна и др. К. м. была создана в 1924—26 гг., благодаря трудам Л. де Бройля, Э. Шредингера, В. Гейзенберга и П. Дирака. К. м. является основой теории многих атомных к молекулярных процессоБ. Она имеет огромное значение для раскрытия строения материи и объяснения ее свойств. На основе К. м были объяснены строение и свойства ато MOB, атомные спектры, рассеяние света создана теория строения молекул и рас крыта природа химической связи, раз работаиа теория молекулярных спектров, теория твердого тела, объясняющая его электрические, магнитные и оптические свойства с помощью К. м. удалось понять природу металлического состояния, полупроводников, ферромагнетизма и множества других явлений, связанных с природой движения и взаимодействием микрочастиц материи, не объясняемых классической механикой, [c.124]

    Свет несет энергию. Но какое количество энергии переносится светом На этот вопрос можно дать ответ, если воспользоваться квантовой теорией, выдвинутой М. Планком (1900). Планк исследовал зависимость энергии, излучаемой абсолютно черным телом, от частоты излучения. Основные положения теории квантов Планка сводятся к выводу, что энергия поглощается или излучается атомами не непрерывно, а дискретно, небольшими порциями — квантами, являющимися кратными некоторого наименьшего возможного количества/ , названного постоянной Планка. Постоянная Планка входит в формулы современной теоретический физики А = 6,6256х X 10 Дж-с. [c.52]

    Фотон — частица, движущаяся со скоростью света — предельно возможной в природе скоростью. Это обстоятельство определяет и особые свойства фотона, рассматриваемые в релятивистской квантовой теории. Из соотношения неопределенностей для импульса и координаты ЛхЛр>/1 можно получить выражение (Ах = Аи 1), связывающее скорость частицы до измерения и после него (и]—v)=Av с непроделенностью ее импульса Др. Отсюда следует, что точное измерение импульса за короткий промежуток времени возможно лишь при условии, что в результате измерения скорость частицы сильно изменится. Если разность Аи растет, то точность измерений А1 и Др соответственно возрастает. Но разность Аи не может быть больше с (движение в одном [c.74]

    Квантовая теория показывает, что у окрашенных тел и растворов энергия возбуждения молекул должна находиться в пределах от 35 до 70 ккал1моль, если больше 70 ккал1моль — поглощение происходит в ультрафиолетовой области спектра меньше 35 ктл моль — в инфракрасной области. Окраска берлинской лазури связана с осцилляцией электрона между атомами Fe (II) и Fe (III). Поглощение электромагнитных колебаний света веществами разного состава неодинаково. [c.32]

    Как отмечалось в гл. 17, электроны в атомах движутся со скоростями, составляющими заметную долю от скорости света. Следовательно, для описания атомных систем необходимым оказалось одновременное привлечение и квантовой механики, и теории относительности. Слияние двух важнейших разделов механики привело к рождению квантовой теории электромагнитного поля—кван-тпвой электродинамики. Олин из важнейших выводов квантовой электродинамики — представление о двойственной природе быстродвижуи ихся микрообъектов, которые проявляют себя и как частицы корпускулы), и как волны. Такая двойственная природа впервые была установлена для света. Разрабатывая теорию света, ученые первой половины XIX в. доказали, что он представляет собой электромагнитные колебания и проявлениями его волновой природы являются преломление, интерференция, дифракция и др. Однако с позиций волновой природы не удавалось объяснить открытый в 1889 г. А. Г. Столетовым фотоэффект (испускание металлом или полупроводником электронов под действием света). Считалось, что энергия электромагнитных колебаний накапливается постепенно, по мере поступления, между началом освещения и моментом вылета электрона должно проходить длительное время. Опыт же показывал, что фотоэффект можно наблюдать в момент освещения металла. [c.201]

    Для люминесцеиции характерно то, что часть энергии возбуждения неизбежно теряется в виде тепла. Поэтому энергия квантов света, выделяющегося при люминесценции, будет меньше, чем энергия квантов возбуждающего света. Иначе говоря, длина волны люминесцентного свечения будет всегда больше, чем длина волны возбуждающего света, за исключением небольшого участка спектра, где полосы возбуждения и люминесценции перекрываются. Эта завнсимостг, была установлена еще до квантовой теории и известна как правило Стокса — Ломмеля спектр люминесценции всегда смещен в сторону более длинных волн по сравнению со спектром поглощения (рис. 18.2). [c.355]

    Происхождение комбинационного рассеяния можно понять, используя представления квантовой теории рассеяния. При столкновении с молекулами кванты света рассеиваются. Если столкновение полностью упругое, они отклоняются от первоначального направления своего движения (от источника), не изменяя энергии. Если же столкновение неупругое, т. е. происходит обмен энергией между квантом и молекулой, молекула может потерять или приобрести дополнительно энергию Д в соответствии с правилами отбора. Приче.м ДЕ должна быть равна из.менению колебательной и (или) врапдательной энергии и соответствовать разности энергий двух разрешенных ее состояний. Излучение, рассеянное с частотой, меньшей, чем у падающего света, называют стоксовым, а с частотой большей — антистоксовым. Стоксово излучение сопровождается увеличением энергии молекул (такой процесс может произойти всегда), и линия его более интенсивна (на несколько порядков), чем антисток-сова, так как в этом случае молекула уже должна находиться в одном из возбужденных состояний (рис. 32.9). [c.770]

    Согласно квантовой теории, энергия фотона — кван-Персходя иа более та света с частотой v — равна ftv, где h — постоян-ни.зкую орбиту, ная Планка (6,626-10 Дж-с). Чтобы электрон .чектрон испускает мог перейти с орбиты с энергией Е на другую орбиту квапг свет.) с энергией В-2, поглощаемый свет должен иметь частоту, определяемую уравнением Планка  [c.37]


Библиография для Свет квантовая теория: [c.63]    [c.201]   
Смотреть страницы где упоминается термин Свет квантовая теория: [c.165]    [c.188]    [c.379]    [c.281]    [c.10]    [c.12]    [c.46]   
Физическая химия Том 2 (1936) -- [ c.467 ]




ПОИСК





Смотрите так же термины и статьи:

Квантовая света

Квантовая теория света

Теория квантовая

Теория света



© 2025 chem21.info Реклама на сайте