Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфирование на дисульфокислоты

    Не менее сложно протекает сульфирование дисульфокислот до три- и тетрасульфокислот. [c.213]

    Таким образом, мы видим, что при дальнейшем сульфировании дисульфокислот нафталина образуются три изомерных трисуль-фокислоты 1,3,6 1,3,5 и 1,3,7. [c.215]

    Направление реакции сульфирования нафталина также в основном зависит от температуры. При сульфировании 100%-ной серной кислотой при 80—90° С получается главным образом а-нафталинсульфокислота наряду с ней образуется -изомер в соотношении 96 4. В результате сульфирования нафталина при 160° С получается преимущественно -нафталинсульфокислота, но наряду с ней образуются также а-изомер и продукты дальнейшего сульфирования дисульфокислоты. Объясняется это тем, что при сульфировании нафталина протекают две обратимые реакции с образованием а- и -изомеров  [c.253]


    Структурные особенности соединений являются важными факторами в образовании сульфона. Так, при сравнимых условиях в реакции с SO3 образование сульфона уменьшается в следующем порядке бензол, толуол, га-ксилол, додецилбензол, причем при сульфировании последнего образования сульфона практически не наблюдается. Присутствие сравнительно небольших количеств других веществ также оказывает влияние на образование сульфона, например при одних и тех же условиях бензол марки X. ч. дал. 5 % сульфона, а бензол, очищенный перегонкой, — около 1 % [64]. При сульфировании с SO3 добавление к бензолу 0,03 % мол. безводного сульфата натрия снижало образование сульфона с 24%, полученных, без ингибитора, до 3,5% [75]. Сообщается также, что при применении того же сульфирующего агента сульфат иатрия снижает образование сульфона при превращении моносульфокислот в дисульфокислоты. Добавление натриевой соли бензолсульфокислоты уменьшает образование сульфона при моносульфировании бензола 20% олеума [74]. При сульфировании полистирола образование сульфона приводит к соединению полимерных цепей поперечными связями [9, 77, 92, 93], чего надо избегать, если хотят получить растворимый в воде продукт. [c.525]

    В то время как низшие парафины поглощаются физически концентрированной и дымящей серной кислотой [184—188], химическая активность увеличивается с ростом молекулярного веса особенно легко реагируют с кислотой соединения, содержащие третичный углеродный атом [189]. к-Гексан, к-гептан, н-октан в общем случае инертны по отношению к холодной дымящей кислоте но при температуре кипения углеводородов происходит быстрое сульфирование с образованием моно- и дисульфокислот [190]. [c.571]

    Более быстрое сульфирование антрахинона можно осуществить серным ангидридом для избежания образования дисульфокислот реакцию проводят при большом избытке антрахинона. [c.318]

    Однако недостатки несущественны по сравнению с достоинствами процесса. К сожалению, газофазное сульфирование неприменимо для сульфирования нафталина и полициклических ароматических углеводородов, а также при получении дисульфокислот бензольного ряда. [c.27]

    Получение дисульфокислот проходит в значительно более жестких условиях, тем более, что первая сульфогруппа, дезактивируя бензольное кольцо, затрудняет введение второй и последующих сульфогрупп. Поэтому сульфирование ведут при высоких температурах и с большим избытком олеума. При сульфировании бензола образуется смесь дисульфокислот, содержащая 80—85% ж-изомера и 10—12% /г-изомера. При сульфировании бО% -ным [c.28]


    Высшие алкансульфокислоты. Пропан-1,2-дисульфокислота получена сульфированием масляной кислоты [435] или ее амида [435], а также кипячением бромистого пропилена с раствором сернистокислого аммония [440, 4836]. При действии на бромистый пропилен сернистокислого натрия образуется главным образом пропилен. Дисульфохлорид реагирует с анилином [4796] по тому же пути, как и его низший гомолог  [c.187]

    Получение бензолдисульфокислоты. Сульфирование бензола с целью получения дисульфокислоты подробно исследовано [29] как в отношении влияния различных условий на ход реакции, так н выхода различных изомеров. С двойным объемом 20%-ного олеума [30] бензол дает лишь л -дисульфокислоту, на что указывает температура кристаллизации дисульфохлорида, полученного [c.12]

    При нагревании с 98%-ной серной кислотой бариевая соль бензол-71-дисульфокислоты медленно превращается в соль мета-изомера. Этот факт указывает на то, что механизм образования иара-изомера из л ета-изомера заключается в гидролизе и вторичном сульфировании. Обнаружено также, что при нагревании бензолсульфокислоты с серной кислотой до 210—275° при уменьшенном давлении (60 мм) [31 а] образуется смесь дисульфокислот. При этом вода отгоняется с такой скоростью, что концентрация кислоты поддерживается на уровне, позволяющем продолжаться процессу сульфирования. [c.13]

    Сульфирование п-изопропилтолуола (п-цимола) исследовано довольно обстоятельно. В старых работах [110] принималось, что в реакционной смеси содержится лишь одна моносульфокислота, и попытка обнаружить второй изомер, предпринятая Якобсеном [111], была безуспешна. Вскоре после этого [112] из продукта сульфирования я-цимола серной кислотой при 100° была выделена бариевая соль другой сульфокислоты, а впоследствии определен и выход последней [113] в указанных условиях (14,6%). При сплавлении с щелочью [114] из нее образуется тимол, и, следовательно, она представляет собой 1-метил-4-изопропилбензол-3-сульфокис-лоту. Было бы весьма интересно выяснить сравнительную эффективность направляющего влияния обеих алкильных групп в о-изо-пропилтолуоле. Тщательное исследование [115, 116] нроцесса сульфирования п-цимола серной кислотой при различных температурах, а также 15%-ным олеумом показало, что максимальный выход 3-сульфокислоты (15,6%) получается при действии серной кислоты, взятой в тройном количестве от веса углеводорода, при 400°. С олеумом при 0° выход этого изомера уменьшался до 2,5%, а выход бариевой соли — главного продукта реакции — достигал 90%. При температурах выше 100° становится заметным образование дисульфокислот. Добавка сульфатов калия, серебра, кобальта или никеля не изменяет выхода 3-сульфокислоты при сульфировании серной кислотой, но сульфаты меди и ртути снижают его с 15,6% соответственно до 9,4 и 9,7%. При сульфировании 1-моля п-цимола 2,8 молями серной кислоты [117] получены результаты, сходные [c.22]

    Три- и тетрасульфокислоты нафталина возможно получйть лишь при сульфировании дисульфокислот олеумом, так что при этом гидролиз сульфогрупп исключается. [c.214]

    При дисульфировашш бензола необходимо проводить сульфирование достаточно быстро и при достаточно низкой температуре, чтобы избежать образоваьнгя равновесной смеси, содержащей нежелательный изомер — п-дисульфокислоты. Реакция десульфирования сама но себе в силу ие- [c.519]

    Обычно небольшое количество дисульфокислоты образуется при сульфировании бензола с 70 %-ной кислотой при высокой температуре — около 250° [5]. В отношении сравнительной легкости образования моно-и полисульфокислот алкилбензолы напоминают бензол. Образование дисульфокислот упоминается как побочная реакция при сульфировании додецилтолуола серным ангидридом с целью получейия моющих средств. [c.525]

    Дису.иьфирование бензола представляет промышленный интерес, так как дисульфокислоты являются промежуточными продуктами при производстве резорцина, потребление которого непрерывно увеличивается. В отличие от фенола, который производится тремя конкурирующими методами (из пих два не включают реакцию сульфирования), резорцин до 1953 г. получался только через сульфокислоты. Однако в 1953 г. была построена пилотная установка для производства его путем окисления кислородом воздуха -диизопропилбензола [19]. [c.530]

    Вторая сульфогрунпа значительно труднее вводится в бензольное кольцо, чем первая, поэтому реакция осуществляется ступенчато, причем моносульфокислота получается стандартными методами. Если для второй ступени иснользуется 98 %-ная серная кислота, то требуется применять высокие температуры (200°) и относительно длительное время реакции [100]. В этих условиях образуется нежелательный п-изомер, причем при 209° и продолжительности реакции 48 час. его образуется 22,7% вероятным механизмом образования его является гидролиз t-изомера с последующим повторным сульфированием в и-изомер. С другой стороны, дисульфирование олеумом происходит при значительно более низкой температуре и в сравнительно непродолжительное время нежелательный и-изомер [100] образуется лишь в небольших количествах или не образуется совсем. Как уже рассматривалось выше, в промышленном процессе, в котором применялся олеум, получается до 95% требуемых дисульфокислот. Сообщают также, что выходы часто падают ниже этой цифры из другого источника [76] известно образование сульфонов как [c.530]


    При повышенной температуре имеют место реакции окисления и сульфирования [5]. В литературе сообщалось о получении моно-и дисульфокислот нормальных углеводородов от гексана и выше [5]. С нафтенами дымящая кислота образует сульфокислоты. Происходит также разрыв кольца, сопровождающийся реакциями окисления и восстановления. Так, например, Буркхард (Впгк-Ьаг(11) [6] обнаружил в продуктах обработки циклогексана дымящей серной кислотой наряду с другими соединениями также и сульфокислоты гексана и бензола. Однако, что касается последней сульфокислоты, то у автора нет уверенности в том, что бензол не присутствовал в исходном циклогексане. [c.224]

    При дальнейшем сульфировании смеси, содержащей 85% р-нафталинсульфокислоты, серной кислотой +20% ЗОд, образуется смесь изомерных дисульфокислот. Вторая сульфогруппа не может присоединиться в орто- или пара-положение по отношению к первой. При более высоких температурах и более длительном времени реакции образуются три- и даже тетрасульфоновые кислоты  [c.314]

    Этан-1,2-дисульфокислота приготовлена окислением этиленмер-каптана [473], этилентиоцианата [454, 474] и некоторых циклических соединений [475], содержащих атомы серы, связанные с соседними атомами углерода. Она образуется с небольшим выходом при сульфировании нитроэтана [477], нитрила и амида пропионовой. кислоты [476] и при электролизе сульфоацетата бария [478]. Действие насыщенного раствора щелочной соли сернистой кислоты на бромистый этилен [Збв, 454, 479] нри температуре кипения смеси ведет к получению этан-1,2-дисульфокислоты с выходом 95%. В небольших количествах аммониевая соль кислоты образуется также при обработке 1,1,2-трибромэтана кипящим раствором сернистокислого аммония [440]. [c.185]

    Вместо непосредственной обработки бензола олеумом получение дисульфокислот возможно также путем введения одной сульфогруппы посредством серной кислоты и последующего пропускания, в реакционную смесь серного ангидрида до окончания реакции [31 б]. Непрореагировавшую при этом серную кислоту можно затем использовать для сульфирования новой порции бензола. Другим возможным методом получения J <-ди yльфoки лoты является взаимодействие бензола с серным ангидридом в инертном растворителе (например, ЗОд) [22 б]. В этом случае образующаяся моносульфокИслота после отгонки растворителя переводится в дисульфокислоту добавлением дополнительного количества се1Шого ангидрида. [c.13]

    Получение бензолтрисульфокислот. Бензол-1,3,5-трисульфо-кислота срштезирована несколькими способами. Она образуется пз бензола и серной кислоты в присутствии пятиокиси фосфора [38] при 280—290°. При нагревании калиевой соли л4-бензолдисуль-фокислоты с серной кислотой до высокой температуры [39] или свободной. и-дисульфокислоты с NaПз(S04), [36] до 280—300 также образуется трисульфокислота. Лучшим способом ее получения, невидимому, является сульфирование натриевой соли. и-бензол-дисульфокислоты олеумом при 275° в присутствии ртути [32, 40], [c.14]

    Получение толуолмоносульфокислот. Сульфированию подвергались многие моноалкилбензолы, но подробно эта реакция изучена только для толуола, Яворский [41] первый получил сульфированием толуола смесь сульфокислот, из которой впоследствии были выделены оба изомера [42], строение которых определено путем сплавления со щелочью [43]. В старых работах [44] большие разногласия вызывал вопрос о содержании в продуктах сульфирования. д<.-толуолсульфокислоты. Более поздние работы указывают на то, что обычно этот изомер образуется в небольшом количестве. Его присутствие доказано выделением 2,5-дисульфокислоты из смеси дисульфокислот, полученной сульфированием толуола [45], а также температурой плавления смесей сульфохлоридов [46], синтезированных из моносульфокислот. Сама л -сульфокислота из продуктов реакций фактически выделена не была. Мета-изомер образуется, повидимому, непосредственно из толуола, а не в результате пере- [c.14]

    При сульфировании л-толуолсульфохлорида олеумом [44, 57 а] при 140—150° выделяется хлористый водород и образуется с очень высоким выходом 2,4-дисульфокислота. о-Толуолсульфохлорид можно, напротив, просульфировать таким образом, чтобы гидролиз не имел места [57 б]. При нагревании толуола с восьмикратным количеством хлорсульфоновой кислоты до 140—150° образуется с хорошим выходом толуол-2,4-дисульфохлорид [57], но получаются ли при этом другие изомеры — не указывается. При соответствующем изменении условий образуется в большом количестве хлорангидрид дисульфокислоты ди-л-толилсульфона. [c.17]

    Сульфирование калиевой соли 2,4-дисульфокислоты тремя молями хлорсульфоновой кислоты при 240° приводит к образова-нию 2,4,6-трисульфокислоты [58]. [c.17]

    Сульфирование высших алкилбензолов. В отличие от толуола, при действии на этилбензол серной кислоты [59], олеума [60, 61] или хлорсульфоновой кислоты образуется только л-сульфокислота. Этот факт хорошо согласуется с тем, что орто-изомер, полученный другим путем, при 100° быстро превращается в /шра-изомер [61]. Для высших алкилбензол-о-сульфокислот соответствующая реакция, повидимому, не изучена. Под действием 50%-ного олеума [62] этилбензол превращается в 2,4-дисульфокислоту. При стоянии этилбензола с 4 частями фторсульфоновой кислоты [63] полз чается 4-сульфофторид с выходом 86% и небольшое количество сульфона. [c.17]

    При действии избытка фторсульфоновой кислоты [27 а] на / -ксилол при комнатной температуре образуется 4-сульфофторид. По некоторым данным, при нагревании последнего до 100° с дополнительным количеством фторсульфоновой кислоты получается с выходом 70% 2,4-дисульфофторид, однако такое строение продукта этой реакции маловероятно, так как при применении других сульфирующих агентов образуется 4,6-изомер. Пагревание / -ксилола с пиросерной кислотой ведет к образованию дисульфокислоты, которую раньще также принимали за 2,4-иаомер [87], так как ее свойства сходны со свойствами кислоты, полученной восстановлением 6-бром-ж-ксило л-2,4-дисз льфокис лоты цинком в водном растворе аммиака. Обработка указанной дисульфокислоты пятихлористым фосфором и сплавление с щелочью также приводило к 2,4-соединениям. Эта кислота получается также при сульфировании ж-ксилол-2- и 4-сульфокислот [81]. В более поздних работах [86, 88, 89], однако, показано, что дисульфокислота и соответствующий дисульфохлорид, полученный при действии на / -ксилол хлорсульфоновой кислоты, фактически являются 4,6-изомерами. Реакции же, приведшие к принятию 2,4-строения, были удовлетворительно объяснены перегруппировкой. [c.20]

    Хлорбензол медленно реагирует с серной кислотой [2, 158] даже нри 100°. С олеумом [159] разной концентрации реакция идет и при более низкой температуре. Лучше всего брать такое количество 10%-ного олеума, чтобы на моль хлорбензола [160] приходился МОЛЬ серного ангидрида, и вести реакцию при температуре не выше 60°. При действии эквимолекулярного количества хлорсульфоновой кислоты [161], кроме сульфокислоты, образуются в небольших количествах также 4-сульфохлорид и сульфон. При избытке же хлорсульфоновой кислоты [157 б, 162], предпочтительно при 25° [163] или при добавке к ней олеума, получают с хорошим выходом 4-хлор бензолсульфохлорид, который дальнейшим сульфированием 100%-ной серной кислотой [164, 165] при 160—180° можно перевести в хлор бензол-2,4-дисульфокислоту или же с номош ью хлорсульфоновой кислоты [37] при 15O—180° — в 2,4-дисульфохлорид. Интересно, что сам хлорбензол и его 4-сульфокислота, а также 2,4-дисульфокислота при нагревании с20%-ным олеумом [165, 166] до 300° дают главным образом 3,5-дисульфокислоту. Это явление аналогично описанному Вибо [167] аномальному вступлению галоида в / е/иа-положение по отношению к группам, обычно направляющим в орто-положение при проведении реакции в газовой фазе при высокой температуре. [c.27]

    При сульфировании дихлорметил-2,3,4 риоксифенилкетона 235] серной кислотой при комнатной температуре образуется непрочная дисульфокислота. Гексахлорциклогексилфенилкетон с олеумом [236] дает моносульфокислоту. [c.38]

    В продукте сульфирования фенола 10-кратным количеством 20%-ного олеума при 120° содержится свыше 80% 2,4,6-трисульфокислоты и дисульфокислота. Такие же результаты получены с олеумом различной концентрации [293] при 100°. При нагревании фенола с избытком хлорсульфоновой кислоты [292] до 130—140° образуется фенол-2,4,6-трисульфохлорид. [c.45]

    Сульфвровавие эфнров фенола. Обработкой анизола серной кислотой [294, 295] при обыкновенной температуре можно получить некоторое количество о-суЛьфокислоты, если только весовое отношение кислоты к анизолу меньше 4. В противном случае образуется только пара-изомер и 2,4-дисульфокисло(га. Если вести сульфирование в присутствии уксусной кислоты или уксусного ангидрида, то получается, повидимому, только п-сульфокислота [296]. Нагревание анизола с 10 весовыми частями серной кислоты при 90° в течение 30 мин. приводило к образованию только 2,4-дисульфокислоты взяв 2 части серной кислоты и ведя реакцию при 150—160°, удалось выделить лишь следы 4-сульфокислоты и ничего больше. Так как в продукте реакции содержалось значительное количество различных сульфокислот неизвестного строения, то отсутствие анизол-2,4-дисульфокислоты обусловлено, повидимому, отщеплением метильной группы. Если бы главным продуктом реакции была фенол-2,4-дисульфокислота, ее вряд ли удалось бы обнаружить при применявшемся методе анализа т. е. при обработке продукта реакции пятихлористым фосфором с последующим превращением полученных сульфохлоридов в амиды. К сульфокислоте, содержащей фенольную группу, этот метод идентификации, разумеется, неприменим. Такое объяснение не совсем убедительно, так как при нагревании бис-(л-метоксифенил)-суль-фопа [297] с серной кислотой до 160—180° образуется не демети-лированное соединение, а л-метоксибензолсульфокислотс. Олеум [c.45]

    Сульфирование резорцина и его производных. Обработка резорцина эквивалентным количеством серной кислоты при комнатной температуре [355] приводит к 4-сульфокислоте. Аммониевая соль последней получается нагреванием резорцина с сульфаминовой кислотой [341]. При нагревании с олеумом [356] до 100° резорцин превращается в 4,6-дисульфокислоту, которую можна получить также при помощи хлорсульфоновой кислоты [357], взяв 5 весовых частей последней на 1 часть резорцина, и ведя реакцию в сероуглеродном растворе при 0° или при комнатной температуре. С 10 частями хлорсульфоновой кислоты при комнатной температуре и в отсутствии растворителя получается дисульфохлорид с выходом 90% с большим избытком сульфирующего агента при 10° образуется 2,4,6-трисульфохлорид. [c.57]

    Сульфироваиие полиоксифенолов. 1,2,3-Триоксибензол (пирогаллол) дает с пиросерной [374] или серной кислотой [375, 376] при 100° сульфокислоту. При более энергичном сульфировании образуется дисульфокислота неизвестного строения [377]. Так как [c.58]


Смотреть страницы где упоминается термин Сульфирование на дисульфокислоты: [c.100]    [c.135]    [c.248]    [c.79]    [c.67]    [c.525]    [c.526]    [c.150]    [c.162]    [c.17]    [c.39]    [c.49]    [c.54]    [c.58]   
Химия и технология соединений нафталинового ряда (1963) -- [ c.144 , c.157 ]




ПОИСК







© 2025 chem21.info Реклама на сайте