Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перекись как катализатор

    Разложение перекисных соединений происходит в присутствии некоторых металлов (железа, меди, марганца, кобальта, хрома) и их солей, являющихся катализаторами. Поэтому концентрированная перекись водорода, надуксусная кислота, а также ряд других перекисей способны взрываться в отсутствие органических веществ. [c.107]

    Перекись лауроила была использована в качестве катализатора полимеризации винилхлорида при 50 °С. Результаты опытов представлены в табл. 19. [c.88]


    Интересно заметить, что было накоплено много фактов в пользу того, что первой стадией окисления Ре такими веществами, как Вгз [135], С1г [136], Гг [117] и О2 [137], является перенос заряда с образованием отрицательных ионов Вг и т. д. -ЬРе подобно тому, как это происходит в системах, содержащих перекись. Оказывается, что прямое окисление Вг", СГ, Р и ОН до соответствующих радикалов может быть индуцировано светом в присутствии Ре или Се , действующих как катализатор .  [c.513]

    Пример 2. Перекись водорода, начальная концентрация которой равна 25,4 моль л, разлагается в присутствии катализатора. При этом через 15 мин в растворе осталось перекиси водорода 9,83 моль л, а через 30 мин—3,81 моль л. Определить порядок реакции  [c.222]

    Одним из основных недостатков обычных установок Флюид является перекал катализатора в трубопроводе пневмоподачи, так как в нем кипение отсутствует и перераспределение тепла между отдельными частицами исключается. [c.403]

    Другие альдегиды реагируют с олефинами если в качестве катализатора применяется перекись бензоила, эта реакция по-видимому, является общей. Так, например, этилен реагирует с ацетальдегидом. [c.383]

    Этот процесс протекает под действием катализаторов (наиболее эффективным из которых является перекись бензоила) по радикальному механизму, примерно по следующей схеме  [c.636]

    ОКСИДЫ, не выделяют перекись водорода при действии воды. Кислород они выделяют только при нагревании и в присутствии катализаторов. Диоксиды марганца и свинца выделяют кислород лишь при взаимодействии с концентрированными растворами серной кислоты. [c.345]

    Алкилирование пропилена изобутаном проводили при 400 °С под давлением 280—1050 кгс/см в присутствии 1,2,3-трихлорпро-пана и 1,2-дихлорпропана [10]. В результате получались 2,2-диметил-пентан и 2-метилгексан. С повышением давления образуется больше 2-метилгексана, что свидетельствует об уменьшении относительной скорости реакции третичного атома углерода. Другими катализаторами термического алкилирования под давлением являются тетраэтилсвинец [И] и перекиси (например, перекись бензоила [12], перекись третп-бутила [13]). [c.253]

    Каталитические методы. Методы, основанные на измерении скорости реакции, особенно широко применяются для определения микроколичеств катализаторов. Основное преимущество этих методов — их высокая чувствительность. Небольшое количество катализатора заставляет вступать в реакцию значительные количества реагирующих веществ, образующих, например, окрашенные продукты реакции. Так, перекись водорода медленно реагирует с йодистым калием  [c.374]


    Наклоняя сосуд, привести в контакт перекись водорода с катализатором, одновременно отмечая время их соприкосновения. По истечении 2 мин установить одинаковые уровни воды в бюретке и воронке. Записать объем выделившегося кислорода. По окончании опыта тщательно вымыть сосуд. [c.36]

    Данная реакция обладает очень большой тенденцией к протеканию в указанном направлении. Это означает, что в конце концов практически вся перекись водорода, имевшаяся в растворе, разлагается на кислород и воду. Однако в отсутствие катализатора реакция протекает с чрезвычайно низкой скоростью. Эту реакцию могут катализировать самые разнообразные вещества, в том числе бром Вг2- В водном растворе бром реагирует с перекисью водорода, в результате чего образуются бромид-ионы и выделяется кислород  [c.26]

    Составьте схемы 1) анионной полимеризации (катализатор — бутиллитий) изопрена (полимер близок по строению к натуральному каучуку), 2) радикальной полимеризации бутадиена (катализатор — перекись ацетила).  [c.39]

    Некоторый практический интерес для промышленности представляет процесс окислительного дегидрирования бутана в бутадиен с участием перекиси водорода [39]. Этот процесс не требует специальных катализаторов и проводится при температуре 593 °С и мольном соотношении бутан перекись водорода = 1 0,2. Реакцию можно направить на образование как олефинов, так и бутадиена. [c.188]

    Перекись бензоила или другой инициатор входит в состав образовавшегося полимера в виде начального звена, что типично для радикальной полимеризации. Вследствие этого в отношении веществ, ускоряющих радикальную полимеризацию, не применяется термин катализатор . Они называются инициаторами, а реакция радикальной полимеризации — инициированной. [c.36]

    Перекиси. Перекись водорода может быть важным продуктом окисления углеводородов Са и вышо в области низких давлении. Нет достаточных доказательств относительно возможности получения значительных выходов алкильных гидроперекисей или перекисей при окислении углеводородов от С до С без применения специальных газообразных катализаторов. В литературе [28] приводятся иекоторые сведения от1го-сительно образования этих перекисей в результате некаталитического окисления высших предельных углеводородов при температуре ниже 300° С. [c.342]

    Peroxide RH-2 перекись RH-2 (ароматическая перекись катализатор полимеризации) [c.653]

    После начала реакции в качестве катализатора можно употреблять перекись ацетона. Перекись вводится в сосуд для, реакции следуюпщм образом ее вдувают в струю азота или постепенно по каплям вводят в виде раствора в эфире или лучше, если это возможно, в тот же самый углеводород, который сульфохлорируется. При большом разнообраз ии перекисей легко подобрать в качестве катализатора ту из них, которая. в каждом данном случае дает наилучшие результаты. [c.370]

    Однако получение очень чистого когазина достаточно сложно. Перегонку под вакуумом после первичной химической очистки необходимо проводить в потоке очень чистого азота (очищенного от кислорода), потсаду что даже небольшое количество кислорода, которое еще имеется в техническом азоте при температуре перегонки 100—130°, может служить поводом для образования небольшого количества перекиси, которая позднее при сульфохлорировании будет играть роль катализатора. Если вакуумную дистилляцию проводить, используя воздух в качестве вспомогательного газа, то в 1 л когазина II может содержаться до 60 мг кислорода (полученного в результате разложения перекиси водорода). С таким когазином II можно получать в темноте сульфохлориды, которые содержат большое количество хлора в углеродной цепи. Прн этом интересно то, что повышение температуры примерно до 70 ° благоприятствует сульфохлорированию. При более высоких температурах, вероятно, вследствие начинающейся реакции десульфцрования выдвигается снова на передний план хлорирование в углеродной цепи. В табл. ПО даны результаты, полученные Кронели-ным с сотрудниками при сульфохлорировании в темноте упомянутого выше когазина, содержащего перекись [25]. В 200 см когазина вводили при различных температурах каждую минуту по 1 л хлора и 1,5 л двуокиси серы. [c.370]

    Малеиновый ангидрид тоже присоединяется к природному каучуку и образует ряд продуктов вплоть до полного насыщения, что соответствует присоединению по 1 молю ангидрида на каждую группу gHg. Ангидрид, вероятно, взаимодействует с а-метиленовой группой. Перекись бензоила действует как катализатор, но нет необходимости добавлять ее к каучуку с вальцеванием последнего. N-метилмалеинимид реагирует подобно ангидриду. Продукты с небольшим содержанием ангидрида используются в связывающих средствах для соединения каучука с металлом [5, 9, 15]. [c.225]

    Однако эти методы уступгют очистке с помощью растворов серной кислоты. Заслуживает внимания непрерывный экстракционный метод очистки НСО смесью водных растворов ароматических сульфокислот и серной кислоты, детали которого требуют дальнейшего изучения. Этот способ пригоден как для очистки НСО, полученных из сульфидных концентратов, так и для выделения НСО из окисленных перекисью водорода фракций дизельного топлива. Непосредственное окисление фракций дизельного топлива с последующим выделением из них НСО в настоящее время разработано Институтом нефтехимического синтеза им. Топчиева, Казанским химико-технологическим институтом и значительно усовершенствовано НИИНефтехимом. Мы в своей рабоге также получали НСО этим способом в периодическом режиме при нагревании реакционной смеси (диз. топлива + перекись водорода) до 80—90 "С, используя в качестве катализатора серную кислоту, и считаем, что этот метод значительно технологичнее, чем применение уксусной кислоты, ввиду отсутствия промывок диз. топлива и сульфоксидов от уксусной кислоты. [c.35]


    При облучении ультрафиолетовым светом реакция олефинов с меркаптанами при низких температурах является весьма общей [42]. Пропилен и пропилмеркаптан при 0° и облучении ртутно-кварцевой ламной легко образуют дипронилсульфид [35]. Перекись /и/ е/ге-бутила и трет-бутилпербензоат являются эффективными катализаторами для реакций олефинов с меркаптанами [18]. Сообщалось также, что селен катализирует эту реакцию при 225° [44]. [c.345]

    Чем чище перекись водорода, тем медленнее она разлагается при хранении. Особенно активными катализаторами разложения Н2О2 являются соединения некоторых металлов (Ср, Fe, Мп и др.), причем заметно действуют даже такие их следы, которые не поддаются прямому аналитическому определению. Для связывания этих металлов к перекиси водорода в качестве стабилизатора часто добавляют немного (порядка 1 10 ООО) пирофосфата натрия — N34P207. [c.151]

    Растворы Rh ia активируют изомеризацию бутена-1, но при этом наблюдается длительный (30—60 мин) индукционный период, в то время как при использовании комплексов Rh(I) реакция начинается сразу. Кроме того, сравнение каталитической активности комплексов Rh(I) и Rh(ni) показывает, что константа скорости изомеризации в первом случае почти на порядок выше. Известно также, что комплексы НЬ(П1) требуется предварительно восстанавливать водородом можно еще отметить, что каталитические свойства Pd(ll) связывают с его переходом в состояние с мeпЬiUeй степенью окисления [27]. Это предположение косвенно подтверждается тем, что соединения, окисляющие палладий (бензохинон, хлорная медь, бихромат калия, перекись водорода, перекиси олефинов), деза ктивируют катализатор.- [c.114]

    Катализатор, перекись дилау-рила, третичный бутилпер-бензоат, масло [c.534]

    По аналогии с окислением индивидуальных насыщенных алифатических и циклических сульфидов до сульфоксидов различными способами могут быть получены из концентратов сульфидов и НСО. Окислителями могут быть кислород воздуха с катализаторами, азотная кислота, гидроперекиси органических соединений и надкислоты, множество сильных неорганических окислителей типа КМПО4, перекись водорода. Наиболее хорошо в препаративном плане изучена реакция окисл-ения сульфидов перекисью водорода в среде уксусной кислоты, уксусного ангидрида, ацетона и без растворителя с добавкой каталитических количеств сильных минеральных кислот — хлорной, серной. [c.29]

    В настоящее время в промышленности используют жидкофазное окисление олефинов и других ненгсьщенных соединений для производства эпокисей (алкилзамещенных окиси этилена) или гликолей, В качестве окислителей применяют либо перекись водорода в уксусной кислоте (при этом нз уксусной кислоты образуется перуксусная кислота и вода), либо непосредственно перуксусную кислоту. Для получения эпокисей процесс проводят при низкой температуре, малом времени реакции и низкой концентрации ионов водорода. Для получения гликолей реакцию проводят в присутствии катализатора — раствора минеральной кислоты в муравьиной или уксусной кислотах [17]  [c.163]

    Алкилирование органических кислот олефинами в присутствии таких катализаторов как хлорсульфоповая кислота, ацетат марганца, хлориды железа, золота [34—41], соляная кислота [42] и различные соединения фосфора [43—44] протекает, с более или менее удовлетворительный выходом эфира, при очень высоких температурах и повышенном давлении. Испытана в качестве катализатора также перекись трет.бутила [45]. [c.8]

    При окислении -дивтор.бутилбензола в присутствии резината марганца, стеарата натрия, едкого натра и небольших количеств воды концентрация гидроперекиси в растворе за 17 час. достигает 69,2%, затем быстро начинает понижаться, и через 44 часа гидроперекись совершенно не обнаруживается в реакционной смеси. В присутствии тех же катализаторов и ацетата кобальта окисление протекает таким образом, что максимальная концентрация гидронерекиси достигается за 4 часа и составляет 4,5%, через 12 час. она понижается до 1,9% и иа этом уровне остается на протяжении 36 час., а через 60 час. перекись полностью исчезает из реакционной массы. Прп пропусканпи воздуха в течение 102 час. конечными продуктами окисления являются г-вто р.бутил-ацетофепон н г-диацетилбензол, выход которых составляет соответственно 39 и 57%, рассчитанный на реакционную массу. Мопо-гддроперекись -дивтор.бутилбензола —светло-желтого цвета жидкость, дигидроперекись — кристаллический иродукт. [c.282]

    Очень концентрированные (80% и выше) водные растворы Н2О2 находят применение в качестве источников энергии и самостоятельно (с помощью катализаторов быстрого разложения Н2О2 из одного литра жидкой перекиси водорода можно получить около 5000 л нагретой до 700 °С смеси кислорода с водяным паром), и как окислитель реактивных топлив. Перекись водорода применяется также как окислитель в химических производствах, как исходное сырье для получения многих перекисных соединений, инициатор полимеризационных процессов, при изготовлении некоторых пористых изделий. для искусственного старения вин, крашения волос, вывода пятен и т. д. [c.152]

    Расщепление гидроперекиси изоцропилбензола протекает довольно гладко, если к технической гидроперекиси вначале прибавить Н2О2 илп вещества, выделяющие перекись водорода [354, 394]. В качестве катализаторов расщепления гидроперекиси кумола можно применять, как указывалось выше, сульфаты металлов I и П групп [374, 395], элементы V и VI групп периодической системы [396], активированные глины [189. 397] и ионообменные смолы, папример сульфосмолы КУ-1 п КУ-2 [398]. [c.304]

    Успехи катализа неразрывно связаны с развитием теории каталитических процессов, хотя и сейчас еще практические его достижения значительно опережают наши теоретические познания и представления. Первые представления о сущности каталитических явлений относятся к началу XIX в. Уже в 1833 г. Е. Митчерлих пытался объяснить схему реакции получения эфира из спирта в присутствии серной кислоты тем, что под влиянием последней спирт разлагается в эфир так же, как сахар при брожении под действием ферментов или как перекись водорода под действием металлов . Все аналогичные каталитические явления он объединил под названием контактных реакций, при которых вещества химически изменяются лишь в присутствии контактов (катализаторов), остающихся (по Е. Митчерлиху) неизл4ененными. Примерно в это же время была обоснована теория промежуточных соединений, т. е. учение о том, что катализатор принима ет активное участие в катализируемом им процессе, образуя с реагентами нестойкие промежуточные соединения, которые получаются и распадаются, облегчая протекание каталитических реакций. Это особенно ясно было сформулировано Л. Плэйфейром в 1848 i . и окончательно развито П. Сабатье и другими в XX в. [c.16]

    При полимеризации хлористого винила, как показал еще И. И. Остромысленский (1912 г.), получаются твердые полимеры, для одного из которых он установил формулу 32H48 ljg. В настоящее время из хлористого винила получают в производственном масштабе полимеры в виде белого негорючего порошка с высокой химической стойкостью. Он термопластичен и на холоду не растворим во многих органических растворителях. Полимеризацию хлористого винила можно вести при высокой температуре, получше и быстрее— каталитически в присутствии растворителей. В качестве катализатора обычно применяют перекись бензоила. [c.610]

    Аналогично, по А. М. Сладкову, А. А. Берлину, П. Г. Сергееву и Т. А. Сладковой [801 протекает теломеризация пропилена с I4, для инициирования которой авторы применяли перекись бензоила и другие аналогичные катализаторы в количестве 1 % от взятого в реакцию I 4. Авторам удалось получить продукт теломеризации трех молекул пропилена с l и некоторые его производные. [c.645]

    Этот процесс представляет собой простую окислительно-восстановительную реакцию (см. гл. 7), в которой бром восстанавливается в бромид-ион, а кислород перекиси водорода окисляется, переходя из состояния окисления — 1 в Н2О2 в нулевое состояние окисления в О2. Если бы кроме этой реакции ничего более не происходило, бром не был бы катализатором, поскольку он подвергается химическому превращению. Однако дело в том, что в кислом растворе перекись водорода реагирует с бромид-ионом с образованием брома  [c.26]

    Катализаторы обладают избирательностью (селективностью) действия, т. е. каждый катализатор может преимущественно ускорять лишь некоторые реакции. Например, окись этилена можно получить из этилена только в присутствии Ag. Никель катализирует реакции гидрирования, но не окисления, а пятиокись ванадия, наоборот, хороший катализатор реакций окисления, но не гидрирования. Во многих случаях исходные вещества способны реагк-ювать в различных термодинамически допустимых направлениях, применяя селективно действующий катализатор, можно осуществить превращение только по одному какому-либо направлению. Так, например, перекись водорода может окислять тиосульфат в тетратионат в присутствии иона иода как катализатора, в присутствии же молибденовой кислоты образуется сульфат  [c.266]

    Перекись водорода — вещество непрочное даже при комнатной температуре она постепенно разлагается с выделением атомарного (активного) кислорода. Урайнение Н2О2 = HgO + О. Этот распад значительно ускоряется при действии света, при повышении температуры или в присутствии катализаторов (мелко раздробленная платина, двуокись марганца МпОг и др.). [c.497]


Смотреть страницы где упоминается термин Перекись как катализатор: [c.261]    [c.494]    [c.80]    [c.331]    [c.140]    [c.308]    [c.576]    [c.256]    [c.38]    [c.69]    [c.125]    [c.33]   
Перекись водорода и перекисные соединения (1951) -- [ c.442 , c.443 ]




ПОИСК







© 2024 chem21.info Реклама на сайте