Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменная жидкостная хроматография

    В жидкостной хроматографии в качестве неподвижной фазы могут служить ионообменные вещества ионообменно-жидкостная хроматография). Область применения хроматографии в этом случае распространяется на электролиты. [c.13]

    Ионообменная жидкостная хроматография [c.92]

    ИОНООБМЕННАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ (ИЖХ) [c.119]

    Ионообменная жидкостная хроматография а) на анионообменниках [c.174]


    Жидкостная хроматография твердо-жидкостная жидко-жидкостная ионообменная хроматография гель-проникающая осадочная хроматография [c.186]

    Сорбенты. Разделение веществ при ТСХ обычно протекает по смешанному механизму, поэтому для успешного решения аналитической задачи очень важен правильный выбор сорбента и элюирующей системы растворителей. При этом следует исходить из химического строения разделяемых соединений. Для неполярных веществ следует применять сорбент с большой адсорбционной способностью. Разделение полярных соединений лучше производить жидкость-жидкостной хроматографией, ионогенных — ионообменной хроматографией. В общем, выбор условий разделения в ТСХ аналогичен другим видам хроматографии. [c.357]

    Детекторы. В качестве детекторов в жидкостной хроматографии обычно используют высокочувствительные спектрофотометры, которые позволяют детектировать до 10 М соединений, поглощающих свет в УФ или видимой части спектра (190—800 нм). В последнее время начали применять высокоскоростные спектрофотометры, регистрирующие спектр в течение 0,01—0,05 с, что весьма ценно при качественной идентификации соединений. Для детектирования неокрашенных веществ можно использовать дифференциальный рефрактометр. При анализе соединений, способных к окислению или восстановлению, применяют электрохимический детектор, по сути представляющий собой миниатюрный полярограф. Используют также флуоресцентные детекторы и детекторы по электропроводности. Последние используют главным образом в ионообменной хроматографии. Для уменьшения размывания хроматографической зоны объемы измерительных ячеек в детекторах сведены к минимуму (I—10 мкл). [c.596]

    Ионообменная хроматография (ИХ) является разновидностью жидкостной хроматографии и в аппаратурном оформлении ничем не отличается от дру- [c.602]

    В силикагелях—материалах, доступных как образцу, так и противоиону, быстро устанавливается массопередача, что приводит к высокой эффективности колонки. Силикагели с привитыми группами делятся на микро- и макропористые в зависимости от диаметра внутренних пор. Микропористые материалы, имеющие небольшие по диаметру поры, позволяют молекулам растворителя, например воды, а также небольших ионов проникать в полимерную матрицу и задерживают большие молекулы. Большинство полимерных ионообменных силикагелей имеют микроструктуру. Полимерные смолы макропористого типа зачастую используют в жидкостной хроматографии низкого давления. Макропористые силикагели с привитыми ионообменными группами стали применять при разделении больших молекул, например белков. Однако устойчивость сорбента невелика из-за растворения его в водной подвижной фазе. Информация об ионообменниках привитых к силикагелю содержится в приложении 1.3. [c.111]


    В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-про-никающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров. [c.6]

    В распределительной жидкостной хроматографии коэффициент разделения называют коэффициентом распределения, в хроматографии исключения (ситовой хроматографии)—коэффициентом исключения, в адсорбционной жидкостной хроматографии — коэффициентом адсорбции, в ионообменной хроматографии и гель-про-никающей хроматографии — коэффициентом разделения. [c.8]

    Свойства потенциометрических детекторов во многом зависят от свойств используемых электродов, из которых наиболее важны ионоселективные электроды (ИСЭ), обсуждаемые в главе 6. Поэтому селективность и чувствительность потенциометрических детекторов мало зависят от их динамических характеристик. В основном они применяются в ионообменной и гель-хроматографии и значительно реже - в жидкостной хроматографии. [c.572]

    Ионообменные макропористые смолы нашли применение и в жидкостной хроматографии неионных органических соединений, в частности для разделения различных дизамещен-ных бензолов. Большое влияние на объем элюирования компонентов и форму пиков оказывает степень сшивки и величины иона в смоле [117]. [c.21]

    По механизму разделения веществ выделяют также ионообменную жидкостную хроматографию. Здесь разделение достигается за счет обратимого взаимодействия ионизирующихся веществ с ионными группами сорбента-ионита ион введенного образца, взаимодействуя с фиксированным зарядом сорбента, обменивается с противоионом. [c.17]

    Ионная хроматография. В настоящее время под ионной хроматографией (ИХ) подразумевают высокоэффективную ионообменную жидкостную хроматографию, целью которой является количественное определение ионов. Необходимость количественного определения, прямо связанная с обеспечением высокой чувствительности кондуктометрического детектирования, накладывает определенные требования на условия разделения ионов. В первую очередь — это использование по возможности разбавленных элюентов, обеспечивающих низкий уровень электропроводности, на фоне которой происходит детектирование разделяемых ионов. Соответственно, применяемые в ИХ ионообменники должны иметь невысокую ионообменную емкость, обычно от 10 до 100 мкэкв/г. Среди других требований можно отметить необходимость высокой механической прочности и гидролитической устойчивости, однородность распределения функциональных групп в зерне сорбента. Синтез таких ионообмеников представляет непростую задачу, поэтому ассортимент выпускаемых сорбентов для ИХ весьма ограничен, стоимость их высока (цена готовой колонки примерно 600 долл. США). По этой причине компании, выпускающие сорбенты для ИХ, предоставляют весьма ограниченную информацию о структурных и других характеристиках ионообменников и для этого варианта хроматографии поставляют, как правило, только готовые колонки. В табл. 8.4 представлены характеристики сорбентов на основе силикагеля, используемых в ионной хроматографии. [c.417]

    Названные зависимости с высокой точностью описывают и газохроматографическое поведение веществ-гомологов в условиях газоадсорбционнои и ионообменной хроматографии, а также могут быть использованы для расчета значений Р, в тонкослойной хроматографии, факторов емкости в высокоэффективной жидкостной хроматографии с обращенной фазой, коэффициентов распределения при растворении органических соединений — членов гомологического ряда в бинарных системах вода — органический растворитель. [c.189]


    Что касается самого процесса ТСХ, то здесь можно усмотреть далеко идущую аналогию с жидкостной хроматографией на колонках. Неподвижную фазу образует н идкость, связанная со слоем фиксированного на подложке гранулированного сорбента, свойства и характеристики которого близки, а иногда даже идентичны таковым для материалов, используемых в качестве носителей неподвижной фазы в колоночной хроматографии. Здесь используются те же производные целлюлозы или силикагеля, к которым надо добавить только полоски ацетилцеллюлозы. Подвижную фазу образует жидкий элюент с аналогичными, рассмотренным ранее свойствами. Неизменной остается и сущность хроматографического процесса, базирующегося на равновесном распределении вещества между неподвижной и подвижной фазами. Как и в любом хроматографическом процессе (гель-фильтрация в тонком слое была рассмотрена в гл. 4), для целей хроматографического фракционирования это распределение должно быть сильно сдвинуто в пользу неподвижной фазы. Из всех вариантов хроматографпп для разделения компонентов белков и нуклеиновых кислот методом ТСХ (сами биополимеры очень редко выступают здесь в качестве объектов) практически пспользуют только два нормальнофазовую распределительную и ионообменную. [c.458]

    Ион-парная хроматография давно находила применение в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Как самостоятельный раздел ВЭЖХ ион-парная хроматография, называвшаяся также экстракционной, парно-ионной, хроматографией с использованием ПАВ, хроматографией с жидким ионообменником, стала развиваться с середины 70-х годов. Метод занимает промежуточное положение между ионообменной хроматографией и адсорбционной, распределительной или обращенно-фазной. Недостатки ионообменных материалов, а именно невоспроизводимость от партии к партии, меньшая активность и стабильность по сравнению с другими сорбентами и небольшой выбор наполнительного материала, исключающий изменение селективности за счет сорбента, привел к некоторому ограничению применения ионообменной хроматографии. В ион-парной хроматографии большинство этих недостатков можно преодолеть. Метод ион-парной хроматографии характеризуется универсальностью и обладает преимуществом по сравнению с классической ионообменной хроматографией, в котором активные центры фиксированы. Вследствие более быстрой массопередачи в ион-парной системе хроматографическое разделение более эффективно, чем на ионообменнике с фиксированными и активными зонами. [c.74]

    Выделение. Одии из первых этапов выделения Б,-получение соответствующих органелл (рибосом, митохондрий, ядер, цитоплазматич. мембраны) с помощью дифференциального центрифугирования. Далее Ь переводят в растворимое состояние путем экстракции буферными р-рами солей и детергентов, иногда-неполярными р-рителями. Затем применяют фракционное осаждение неорг. солями [обычно (N 14)2804], этанолом, ацетоном или путем изменения pH, ионной силы, т-ры. Для предотвращения денатурации работу проводят при пониж. т-ре (ок. 4°С) с целью исключения протеолиза используют ингибиторы протеаз, нек-рые Б. стабилизируют полиоламн, иапр. глицерином. Дальнейшую очистку проводят по схемам, специально разработанным для отдельных Б. илн группы гомологичных Б. Наиб, распространенные методы разделения-гель-про-никающая хроматография, ионообменная и адсорбц. хроматография эффективные методы-жидкостная хроматография высокого разрешения и аффинная хроматография. [c.250]

    Термин Р.х. применяют в осн. в газовой хроматографии. Аналогичные разновидности жидкостной хроматографии обычно называют спец. терминами, напр, реакционное детектирование -совокупность методов превращения анализируемых соед. после их выхода из колонки с целью улучшения характеристик последующего детектирования, химическая дериватизация -методы получения производных анализируемых соед. с целью улучшения характеристик разделения и детектирования. Иногда ионообменную и лигандообменную (с использованием хелатообразующих сорбентов) хроматографию рассматривают как частный случай реакц. жидкостной хроматографии. [c.216]

    Важное практич. значение имеют методы, основанные на исследовании испускания и поглощения электромагн. излучения в разл. областях спектра. К ним относится спектроскопия (напр., люминесцентный анализ, спектральный анализ), нефелометрия и турбидиметрия и др. К важным Ф.-х. м. а. принадлежат электрохим, методы, использующие измерение электрич. св-в в-ва волыпамперометрил, кондуктометрия, кулонометрия, потенциометрия и т. д.), а также хроматография (напр., газовая хроматография, жидкостная хроматография, ионообменная хроматография, тонкослойная хроматография). Успешно развиваются методы, основанные на измерении скоростей хим. р-цик (кинетические методы анализа), тепловых эффектов р-ций (термометрич. титрование, см. Калориметрия), а также на разделении ионов в магн. поле (масс-спектрометрия). [c.90]

    В первых жидкостных хроматографах (тина ионообменных хроматографов) прошедшая через колонку подвижная фаза с комиоиеитами пробы просто собиралась в небольшие сосуды, а затем методами титриметрии, колориметрии, полярографии и т.д. определялось содержание комиоиеита в этой порции. Т.е. процессы разделения пробы п определения ее количественного состава были разделены во времени и пространстве. В современном жидкостном хроматографе эти процессы объедипепы в одном приборе. [c.19]

    Высокоэффективная жидкостная хроматография (ВЭЖХ) основана на разделении АК на колонках, заполненных гидрофобным или ионообменным носителем. Но самое главное в этом виде хроматографии состоит в том, что носитель состоит из частиц очень малого диаметра - порядка 5-10 мкм. Размер колонки от 5 до 20 мм. Наполнение колонки микрочастицами сорбента уменьшает свободное пространство между ними и повышает эффект взаимодействия веществ, движущихся в колонке. Так как плотная упаковка носителя снижает скорость перемещения подвижной фазы, необходимо приложить давление до нескольких сот килопаскалей, что ведет к высокой разрешающей способности данного вида хроматографии. [c.19]

    Новейшие методы ионообменной хроматографии, в частности высокоэффективная жидкостная хроматография (ВЭЖХ), широко используются в фармакологии (при создании и определении лекарственных веществ), в клинической биохимии (при определении биологически активных веществ в физиологических жидкостях), в биотехнологических процессах и производствах и других областях они позволяют определять вещества в нано-, пико- и фемтаграммных количествах. [c.29]


Смотреть страницы где упоминается термин Ионообменная жидкостная хроматография: [c.177]    [c.221]    [c.21]    [c.226]    [c.452]    [c.553]    [c.668]    [c.251]    [c.469]    [c.747]    [c.28]    [c.30]    [c.106]    [c.307]    [c.331]    [c.155]    [c.6]   
Смотреть главы в:

Методы исследования структуры и свойств полимеров -> Ионообменная жидкостная хроматография


Аналитическая химия синтетических красителей (1979) -- [ c.119 , c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкостная колочная хроматография (ионообменная и распределительная)

Жидкостная хроматография классическая ионообменная

Жидкостная хроматография хроматографы

Ионообменная хроматографи

Определение несульфатированных веществ в нейтрализованных продуктах сульфатирования методом ионообменной и жидкостной хроматографии

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматография ионообменная

Хроматографы жидкостные

Электролиты, разделение методом ионообменной жидкостной хроматографии



© 2025 chem21.info Реклама на сайте