Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силикагели ионообменные поверхности

    Силикагели с ионообменными поверхностями [c.799]

    Замечательно то, что сорбция меди из аммиачного раствора продолжается и после заполнения всей поверхности силикагеля ионами меди, т. е. после поглощения данным сорбентом такого количества мг-экв сорбата ( 2,1 мг-экв/1г 5102), которое равно сорбционной емкости сорбента. При этом поглощается в 5 раз больше меди, чем на ионообменной стадии. Совершенно очевидно, [c.220]


    В качестве адсорбента широко применяют так называемый а к-т и в н ы й уголь, т. е. березовый уголь, поверхность которого сильно увеличена в результате обработки водяным паром при нагревании. Известно, что на адсорбции газов активным углем основано действие фильтрующего противогаза, изобретенного Н. Д. Зелинским и защитившего от отравления многие тысячи солдат во время первой мировой войны. Не менее важно поглощение углем растворенных веществ, открытое Т. Е. Ловицем. Активным углем улавливают бензин нз природных газов, очищают от примесей спирт и сахарные сиропы. Адсорбционными свойствами обладают также природные и искусственные алюмосиликаты, силикагель, синтетические ионообменные смолы (катиониты и аниониты). [c.321]

    Таким образом, с помощью мессбауэровской спектроскопии можно получить информацию, необходимую для определения структуры химических соединений, выявления тонких деталей химической связи и описывать быстрые реакции. Возможно и чисто аналитическое применение, которое в дальнейшем будет расширяться. Чувствительность метода позволяет даже исследовать динамику атома примеси при концентрации 10- % (ат.), изучать радиационные и другие дефекты в материалах (в том числе на поверхности высокодисперсных систем и в пленках), механизм воздействия ультразвука и радиочастотных колебаний на параметры технологических процессов, диффузию атомов в твердых телах и на их поверхности. Установлено, например, что ионы Ре -ь, локализованы на поверхности силикагеля и цеолита даже после адсорбции воды, в то время как в ионообменной смоле КУ-2 после адсорбции воды ионы Ре + диффундируют в поры смолы, образуя диффузный слой, компенсирующий отрицательный заряд сульфогрупп. По-видимому, большое значение будут иметь методы определения состояния элементов с переменной степенью окисления (табл. 31.8), выявления фаз, включенных в сложные композиции в незначительных количествах, и др. [c.748]

    Метод сушки при распылении раствора кремневой кислоты который приготовлялся из силиката натрия ионообменным способом в водородной форме, был запатентован Бейли [241]. По другому методу [242] золь приготовляется посредством частичной нейтрализации раствора силиката натрия при pH 9,6—10,9 с последующим подкислением золя перед его сушкой распылением. Такой способ, вероятно, впервые позволил получить коллоидные частицы размером около 3—4 нм при высоком значении pH, причем выделяемая затем дополнительно кремневая кислота с низкой молекулярной массой при низком значении pH воздействует в качестве связующего для придания прочности структуре силикагеля и сохранения высоких значений удельной поверхности (965 м /г) и объема pop (0,75 см г). По этому способу сохраняется относительно открытая упаковка гранул, так что кремнезем занимает всего лишь 38 % всего объема силикагеля. [c.722]


    В настоящее время представляется, что любой тип ионной или хелатной органической группы может быть присоединен к поверхности силикагеля с открытыми широкими порами или к поверхности кремнеземного порошка для того, чтобы получить пригодные ионообменные свойства. Унгер [6] обобщил различные способы, посредством которых на поверхности пористого кремнезема можно образовать связи Si—С. Этот вопрос будет обсужден ниже в гл. 7. Здесь же приводится рассмотрение только специфических ионообменников данного типа. [c.801]

    Предложен [а. с. СССР 444780] способ получения привитых полимеров на модифицированных ионами переходных металлов (путем ионообменной реакции) алюмосиликатах и силикагеле, которые выступают в роли компонентов окислительно-восстановительных систем, инициирующих полимеризацию в растворах и эмульсиях [404]. На поверхности е +- и Сг +-содержаш,их алюмосиликатов в присутствии пероксидных соединений происходит полимеризация акрилонитрила, винилацетата, 4-винилпиридина, акриламида, причем часть полимеров прививается к твердой поверхности. [c.224]

    Как известно, применяемые в настоящее время неорганические ионообменные сорбенты (окиси, гидроокиси и соли металлов, алюмосиликаты, силикагели, пермутиты, бентониты, глаукониты, цеолиты и т. д.) обладают высокоразвитой удельной поверхностью, способностью к химической, молекулярной сорбции и сорбции коллоидных частиц, повышенной радиационной и термической стойкостью. Они, как правило, слабо набухают в водных растворах, и ионный обмен происходит в основном на поверхности сорбента, так что кинетика обмена не осложняется процессами, связанными с диффузией ионов в фазе самого сорбента, как это имеет место в случае большинства ионообменных смол. С другой стороны, ионообменные смолы превосходят неорганические сорбенты по таким важным показателям, как величина емкости, основность или кислотность, химическая стабильность. Понятно, что определенный интерес представляет получение ионообменников, сочетающих в себе свойства ионообменных материалов как минеральной, так и органической природы. Этой цели можно достигнуть, используя принцип получения комбинированных минерально-полимерных продуктов путем газофазной привитой полимеризации, осуществляя на неорганических сорбентах полимеризацию мономеров, дающих полимеры, способные к ионному обмену (сами по себе или после введения соответствующих ионообменных групп путем необходимых химических превращений) [1]. [c.168]

    Водные фазы удерживаются силикагелем, ионообменными смолами [135]. В качестве носителя неподвижной фазы для хроматографии неорганических веществ находит применение целлюлоза. Рекомендуют [539] предварительно активировать целлюлозу кипячениел с 5%-пой НКОз в течение нескольких минут. Так, водная фаза, содержащая следы радиоизотопов цинка и кадмия, удерживалась природной и зал1ещенной целлюлозой (фосфат целлюлозы), а следы радиоизотопов ртути были отделены в диэтиловом эфире [1012]. Предложено [539] отделять ртуть от Си, С(1, В1, РЬ методом распределительной хроматографии на целлюлозе. Смесь ионов Нд, С(1, Ъп была успешно разделена с помощью распределительной хроматографии на колонке, заполненной ионитом [212]. Подвижной фазой служила тонкая пленка воды на поверхности мелких зерен ионита, что обусловливало большую скорость процессов обмена между фазами. Сама же смола не принимает при этом участия в процессах разделения. [c.60]

    При ионообменном взаимодействии сорбированного аммиаката двухвалентного кобальта на поверхности силикагеля с водой (или ее парами) происходит превращение [юно-обменно-сорбированной формы Со (И) в молекулярно-сорбированный поверхностный гидросиликат. Превращение это обратимо. Процесс гидратации (дегидратации) проявляется в отчетливом изменении цвета образца, что связано с изменением координационного состояния кобальта при сохраняющемся состоянии окисления. Характер координации и ее I вменения легко проследмть I ,) очтическим электрог.пым сг с-л рам. Для [c.173]

    Сорбционные методы можно применять также для концентрирования, разделения и определения благородных металлов (серебра, золота, металлов платиновой группы — рутения, осмия, родия, иридия, палладия, платины), содержащихся в малых количествах в природных водах и в различных растворах. При этом происходит концентрирование определяемого металла из большого объема раствора в небольшой массе сорбента за счет сорбции соединений этого металла на сорбенте. Сорбентами служат органические полимеры, силикагели, химически модифицированные ионообменными или комгаексообразующими группами (четвертичными аммонийными и фосфониевыми основаниями, производными тиомочевины), привитыми на поверхности силикагеля. [c.236]

    При адсорбции из растворов электролитов наряду с поглощением нейтральных молекул наблюдается и адсорбция ионов, находящихся в растворе, например краситель метиленовый синий, основной по своим химическим свойствам, у которого положительно заряженный ион адсорбируется преимущественно на электроотрицательных (кислотного характера) адсорбентах, в частности на силикагеле, а отрицательный ион — ион хлора — остается в растворе. Для компенсации заряда этого аниона из силикагеля переходит в раствор ион натрия, всегда содержащийся в небольшом количестве в силикагеле. Такая избирательная адсорбция одинаковых ионов растворов электролита, сопровождающаяся одновременно вытеснением соответствующего иона из адсорбента, называется обменной, полярной или ионообменной. При обменной адсорбции происходит обмен ионами в эквивалентных количествах, благодаря чему элек-тронейтральность растворов остается ненарушенной. По этой жё причине электронейтральность остается ненарушенной и на поверхности адсорбента. Обменная адсорбция протекает более медленно, чем обычная. [c.139]


    Таким образом были получены диметиламид лизергиновой кислоты [10] и пептиды [111. Амиды можно также синтезировать, пропуская пары кислоты и амина над нагретой до 280 °С поверхностью силикагеля [12] и отгоняя воду в виде азеотропа с ксилолом после использо вания каталитических количеств ионообменной смолы амберлит Ш 120 (Н" ) [13]. Но даже в водных растворах имеется некоторая тен -денция к образованию равновесной смеси амида, амина и кислоты, особенно в случае двухосновных кислот [141. [c.385]

    Иная ситуация имеет место при проведении эксклюзионной хроматографии в водных средах. Из-за специфических особенностей многих разделяемых систем (белки, ферменты, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава подвижной фазы для подавления различных нежелательных эффектов [34, 35]. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением pH. В частности, поддержание рН=<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6 М оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества. [c.48]

    К сорбентам для высокоэффективной эксклюзионной хроматографии белков, ферментов и других биологических объектов предъявляются значительно более жесткие требования по инертности поверхности, чем к сорбентам для разделения синтетических полимеров. Кислые силанольные пруппы силикагеля обладают высокой адсорбционной активностью, проявляют слабые ионообменные свойства и способны денатурировать белковые молекулы. Поэтому поверхность жестких сорбентов очень тщательно модифицируют прививкой монослоев нейтральных гидрофильных органических групп. К таким сорбентам относятся ц-бондагель Е и материалы, содержащие глицерильные группы. Поверхность д-бондагеля Е модифицирована алифатически-ми эфирными группами. Колонки с этим сорбентом можно использовать с любыми растворителями от пентана до буферных растворов в области pH от 2 до 8. Они характеризуются высокой разрешающей способностью, но из-за малого рабочего объема (примерно 1,2 мл на колонку) требуется особо точная подача подвижной фазы. [c.108]

    Классические ионообменные полимерные сорбенты были заменены в нониой хроматографии покрытыми материалами, в которых поверхность иепористого стекла или полимерные частицы покрывали слоем ионообменника. Такие сорбенты имели в диаметре 30-40 мкм (пелликулярные ионообменники). Во втором варианте использовали пористый силикагель, аккуратно покрытый жидкими ионообменниками, по аналогии с адсорбционной хроматографией. [c.284]

    В тонкослойной хроматографии адсорбентом служит тонкий, равномерный слой (обычно толщиной около 0,24 мм) сухого мелкоизмельченного материала, нанесенного на подходящую подложку, например на стеклянную пластинку, алюминиевую фольгу или пластмассовую тленку. Подвижная фаза движется то поверхности пластинки (обычно под действием капиллярных сил) хроматографический процесс может зависеть от адсорбции, распределения или комбинации обоих явлений, что в свою очередь зависит от адсорбента, его обработки и природы используемых растворителей. Во время хроматографирования пластинка находится в хроматографической камере (чаще всего изготовленной из стекла, чтобы можно было наблюдать движение подвижной фазы по пластинке), которая обычно насыщена парами растворителя. В качестве твердого носителя часто используются силикагель, кизельгур, окись алюминия и целлюлоза для лучшего сцепления с носителем к нему можно прибавлять соответствующие вещества, например сульфат кальция (гипс). Для изменения свойств приготовленного слоя его можно пропитать буферными материалами, чтобы получить кислый, нейтральный или основной слой можно использовать и другие вещества, такие, как нитрат серебра. В некоторых случаях слой может состоять из ионообменной смолы. Такой широкий диапазон различных слоев, используемых в сочетании с разными [c.92]

    Краткие выводы и обзоры. Известны некоторые общие обзоры ио ионообменным свойствам кремнеземной поверхности и силикагелей, опубликованные за последние 25 лет, но лишь в немногих рассматриваются все аспекты этой темы. Бентон и Элтон [238] подсчитали энергию адсорбции ионов, находящихся в слое Штерна. Душина и др. [239] показали взаимосвязь между величиной pH и адсорбцией ионов металлов, которую они описали на основе растворимости, поверхностных соединений [240]. [c.931]

    Исторически первыми были открыты адсорбционные процессы, обусловленные межмолекулярным взаимодействием, физические процессы концентрирования растворенных или газо-парообразных веществ на поверхности, например, активного угля или силикагеля [1]. Несколько позже в почвах были открыты процессы ионообменные — гетерогенные обратимые химические реакции двойного обмена [2]. Эти процессы не только позволили понять механизм многих агрохимических процессов [3], но и послужили основой для создания синтетических ионообменных сорбентов, нашедших самое широкое применение в аналитической химии, водопод-готовке, гидрометаллургии и пр. [2, 4—7]. Наконец, позже была показана возможность и целесообразность использования сорбентов-носителей, пропитанных растворителем или химически активными растворами последние дали возможность осуществить, в частности, процессы распределительной [8] и осадочной [9] хроматографии. [c.312]

    Можно использовать практически любые источники 5102 и АЬОз, хотя качество получаемого продукта зависит от чистоты сырья. Наиболее распространенными исходными материалами являются Ыа2510з, силикагель, НаАЮг, сульфат алюминия и различные глины. Присутствующие в сырье катионы оказывают большое влияние на структуру цеолита. Различные типы цеолитов могут быть получены из одних и тех же исходных материалов простой заменой катионов. Нанример, из одной и той же смеси можно. - получить цеолиты типа V или Ь в зависимости от того, какие в ней присутствуют катионы Ма+или К+- Для получения разнообразных цеолитов типа 2 применяют органические катионы ([44—47]. Степень кристаллизации продукта определяют путем Сравне1шя со стандартным образцом специально приготовленного цеолита с использованием дифракции рентгеновских лучей, вычисления удельной поверхности и ионообменной способности, а также электронной микроскопии. Рост кристаллов сильно зависит от отношения ЗЮг/АЬОз и от таких факторов, как создание центров кристаллизации (затравка), температурный режим и чистота реагентов [48—49]. Обычно кристаллизацию продолжают до полного исчезновения алюминия в смеси. [c.37]

    Наряду с ионообменной хроматографией для вьщеления и разделения основных и кислых соединений широко используют хроматографию на мощ фицированных сорбентах, поверхность которых обладает кислыми или основными свойствами. Силикагель, модифицированный щелочью или Кг СОз, позволяет полностью вьщелять из тяжелых нефтепродуктов кислые соединения [115, 127]. Хорошим селективным сорбентом для выдглeнxiя оснований. чв.ляется оксид алюминия, модифицированный фосфорной кислотой [115, 127]. [c.94]

    Фенолы, обладающие кислыми свойствами, также очень сильно удерживаются на основной поверхности оксида алюминия и гораздо слабее на силикагеле. Эти соединения вьщеляются из нефтепродуктов в составе кислой фракции при ионообменной хроматографии. Дальнейшее разделение бензпроизводных фенола затруднено из-за малого влияния ароматического кольца на удерживание фенолов, основной вклад в которое вносит гидроксильная группа [9]. [c.104]

    Ряд ДФП получен нанесением органических люминофоров на вещества с сильноразвитой поверхностью — силикагель, окись алюминия, целлюлозу, крахмал, ионообменные смолы [12, 13]. Существенный интерес представляет получение пигментов осаждением окрашенных алкидных смол типа глифталевой [14], ксифталевой [15], триметилолпропанфталевой [16] и других смол подобного строения [16, 17] на гидроокиси алюминия. Для этого их растворяют в аммиаке и прибавлением сульфата алюминия осаждают пигменты, которые могут быть использованы в темперных красках [18]. [c.201]


Смотреть страницы где упоминается термин Силикагели ионообменные поверхности: [c.221]    [c.432]    [c.44]    [c.452]    [c.257]    [c.7]    [c.111]    [c.54]    [c.159]    [c.170]    [c.181]    [c.153]    [c.316]    [c.802]    [c.1014]    [c.56]    [c.305]    [c.7]    [c.111]    [c.7]    [c.111]    [c.136]    [c.20]   
Химия кремнезема Ч.1 (1982) -- [ c.803 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность силикагеля

Силикагель



© 2025 chem21.info Реклама на сайте