Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец определение в висмуте

    Свойства. Зеленовато-коричневые кристаллы или порошок. Применяют для определения РЗЭ при pH 4—6 переход окраски от голубой к красной для определения висмута (III) при pH 2—3 и свинца при pH 4 переход окраски от красной к желто-оранжевой. При pH 7—8 определяют никель, кобальт, кадмий, магний и марганец переход окраски от сине-фиолетовой к красной. Методом обратного титрования определяют палладий, таллий (III), железо, индий и галлий (III), [c.273]


    Свойства. Применяют в кислой среде (при pH 2—3) для определения висмута и тория (IV). В щелочной среде определяют кадмий, кобальт, медь, магний, марганец, никель и цинк. [c.273]

    Не мешают определению висмут, сурьма, олово, мышья никель, кобальт, марганец, цинк и кадмий. [c.290]

    Аналогично свинцу ведут себя марганец и висмут, но определение их этим способом не имеет практического значения. [c.153]

    Определению меди мешают свинец, железо (1П), алюминий, олово, сурьма, марганец и висмут, если они содержатся в анализируемом продукте в значительных количествах. [c.192]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Тиогликолевая кислота образует с тяжелыми металлами внутрикомплексные окрашенные соединения. В кислой среде золото, серебро и медь дают устойчивые желтые комплексы. В аммиачной или слабокислой среде образуют комплексы молибден (VI), вольфрам (VI), уран (VI), никель (II), кобальт (II), висмут (III), железо (III) и марганец (II). Применяется для фотометрического определения железа (III) как добавка при определении олова (II) с дитиолом, а также для определения молибдена (VI) и рения (VII). [c.208]

    К числу тяжелых металлов относят хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьму, теллур, вольфрам, ртуть, таллий, свинец, висмут. Употребляемый иногда термин токсические элементы неудачен, так как любые элементы и их соединения могут стать токсичными для живых организмов при определенной концентрации и условиях окружающей среды. [c.93]


    Так, например, в работе [1204] после осаждения арсената добавлением определенного количества стандартного раствора нитрата висмута раствор с осадком разбавляют водой до 200— 300 мл и титруют избыток висмута раствором комплексона III в присутствии ксиленолового оранжевого в качестве индикатора. При определении 4—100 мз Аз(У) ошибка < 1 %. Определению арсената этим методом не мешают щелочные и щелочноземельные элементы, цинк, марганец и ряд других элементов. [c.49]

    При экстракции четыреххлористым углеродом из растворов с pH 10, содержащих комплексон Н1 и диэтилдитиокарбаминат, в неводный слой переходят катионы меди, ртути и висмута, а в водном растворе остаются кобальт, никель, марганец, железо, цинк и др. Далее устанавливают pH 4 и повторяют экстракцию при этом в органический растворитель переходят весь кобальт, железо и частично никель и марганец. Последние три катиона вытесняют из неводного раствора, прибавляя к водному раствору ацетат ртути (диэтилдитиокарбаминат ртути значительно устойчивее аналогичных соединений железа, никеля и меди, но менее устойчив, чем диэтилдитиокарбаминат трехвалентного кобальта). Для отделения кобальта от больших количеств железа лучше маскировать последнее пирокатехином при pH 10, а затем очищать экстракт от следов железа ацетатом ртути. При определении кобальта в присутствии больших количеств меди последнюю экстрагируют из раствора с pH 10, содержащего комплексон Н1 и диэтилдитиокарбаминат натрия после этого снижают pH до 4 и экстрагируют кобальт. [c.151]

    Оксихинолин отличается от других оксихинолинов пространственным расположением гидроксильной группы по отношению к азоту кольца. В результате такого расположения ионы многих металлов образуют с 8-оксихинолинами нерастворимые клешнеобразные соединения. Такие металлы, как медь, цинк, кадмий, алюминий, висмут, уран, марганец, железо (трехвалентное) и никель, наряду с некоторыми другими, осаждаются в виде клешнеобразных соединений с 8-оксихинолином из его раствора, содержащего уксуснокислый натрий. Вследствие этого 8-оксихинолин является одним из наиболее ценных органических реагентов для определения металлических ионов. Это соединение известно также под названием оксина оно было предложено в качестве аналитического реактива Ханом [449] и Бергом [450]. Имеются хорошие обзоры работ с применением этого реагента [4506, 451]. [c.104]

    Определению мешают таллий, висмут, олово (II), марганец, органические вещества, красители [c.321]

    Наиболее часто применяются комп-лексоны, преимущественно комплексен III. Комплексон III образует со многими ионами металлов малодиссоциирующие комплексные соединения. Титруют по предельному току определяемого иона. Определяются висмут, железо, никель, свинец,-цинк, медь, марганец, кобальт, ртуть, кадмий, индий. Устойчивость комплексов этих металлов с комплексоном III различна, поэтому титруют при определенной кислотности среды. Амперометрическое титрование возможно, для определения полярографически неактивных веществ, когда ни титруемый ион, ни реагент не дают диффузионный ток. Для этого в анализируемый раствор вводят специальный ион-индикатор, способный к электродной реакции. Индикатор реагирует с реагентом после того, как прореагируют определяемые ионы. Титрование в этом случае проводят при потенциале, соответствующем предельному току индикатора. Например, при амперометрическом титровании алюминия раствором фторида в качестве индикатора применяют раствор соли железа [c.165]

    Определению кадмия не мешают свинец, висмут, мышьяк, сурьма, олово, хром, алюминий, железо, марганец, цианиды, роданиды, фосфаты, сульфиты, тиосульфаты и другие ионы, обычно присутствующие в водах в концентрациях ниже 50 мг/л-. [c.289]

    Железо, висмут, олово, сурьма и марганец не мешают определению, так как в аммиачной среде эти элементы выпадают из раствора. При образовании большого количества осадка определяют методом стандартной добавки (см. стр. 277). [c.312]

    Молибден, хром и ванадий восстанавливаются свинцом, и так как продукты, их восстановления титруются иодом, то для олова получаются повышенные результаты. Присутствие этих элементов обнаруживается по изменению окраски раствора при восстановлении олова. Молибден, например, после восстановления окрашивает раствор в коричневый цвет, а ванадий — в пурпуровый. Малые количества мышьяка не мешают определению Из остальных веществ, не мешающих титрованию, можно отметить сульфаты, фосфаты, иодиды, бромиды, фториды, железо, никель, кобальт, цинк, марганец, уран, алюминий, свинец, висмут, магний и щелочноземельные металлы. [c.339]

    Мешают определению медь, которая полностью осаждается, железо (II), кобальт, никель, марганец, висмут и кадмий, осаждающиеся частично. [c.486]

    Определению не мешают кальций, стронций, барий, магний, свинец, бериллий, марганец, никель, хром(III), алюминий, уран, висмут, лантан, мышьяк, сурьма, теллур, а также нитрат-, сульфат-, хлорид-, фторид-, бромид-, сульфит-, тиосульфат-, тетраборат-, оксалат-, цитрат- и тартрат-ионы. [c.164]


    Определению селена не мешают теллур, медь в соотношении 330 000 1, железо (РеЗ+) 16 000 1, хром (Сг +) 3 000 1, молибден 3 000 1, марганец 3 000 1, висмут 3 000 1, ванадий 300 1. [c.198]

    Металлы, находящиеся в периодической системе на границе с неметаллами, кристаллизуются в структурах с меньшими координационными числами. Например, для кремния, германия, а-оло-ва характерен структурный тип алмаза (см. рис. 4.9) с к. ч. = 4. Мышьяк, сурьма и висмут кристаллизуются в структурном типе мышьяка (см. рис. 4.11) с к. ч. = 3. В структурах этих элементов существует определенный вклад ковалентных связей (промежуточный тип связи между металлической и ковалентной). Большинство переходных металлов, как, например, марганец и хром, отдают на образование связи сравнительно много электронов, благодаря чему, кроме ковалентной, в них действует и металлическая связь. [c.217]

    Так, например, медь может полностью вытеснять тал-лий(1), никель, висмут, свинец(П), кадмий, цинк, сурь-му(1П), теллур(1У) и марганец из их диэтилдитиокарбаматов, в результате чего оказывается возможным косвенное фотометрическое определение зтих металлов [905—907, 12101. [c.232]

    Ванадий (IV), уран (VI), сурьма (III), висмут и олово (IV) осаждаются. Алюминий, медь, кобальт, хром (III), ртуть (I), таллий (I), марганец, цинк, железо, кадмий, титан, молибден, железо (II), вольфрам, ванадий (V), мышьяк (III) и мышьяк (V) не мешают определению не мешают также сульфат-, хлорид-, нитрат- и фосфат-ионы. [c.802]

    Мешающие ионы. В кислой среде вместе с кобальтом осаждаются железо (П1), медь, уран (VI), хром (III), цирконий, серебро, висмут, титан, ванадий (V), олово (IV), вольфрам, молибден, палладий (П). Остаются в растворе никель, цинк, алюминий, марганец, фосфор (V), аммоний, бериллий и щелочноземельные элементы. Мещают определению нитрат-ионы. [c.835]

    Не мешают определению, даже когда присутствуют в количестве, в 100 раз превышающем содержание кобальта алюминий, сурьма (III), мышьяк (И1), мышьяк (V), бериллий, висмут, кадмий, марганец, фосфор (V), свинец, торий, титан, цинк и цирконий. [c.839]

    Сходные варианты получили распространение при определений ряда других металлов. Так, методика определения висмута в свинце и свинцовых кабельных сплавах фотометрированием тиомочевинного комплекса включает экстракционное отделение висмута в виде его комплекса с ДДТК [296]. Марганец в присутствии церия фотометрируют в форме перманганата после экстракционного выделения марганца с помощью ДДТК [297]. Фотометрическое определение кобальта с помощью нитрозо-К-соли в металлическом уране включает экстракцию комплекса кобальта с ДДТК [298]. [c.249]

    Сначала через анионит пропускали 4 N раствор соляной кислоты, а затем — 0,02 N. При этом марганец, никель, хром, кобальт и другие компоненты переходили в фильтрат, висмут сорбировался на анионите по схеме (ВЮЦ) - -АнС1г (В1С1) Ан + С1", где Ан — анионит. Затем поглощенный анионитом висмут вымывали 2N раствором серной кислоты. Для полного вымывания висмута достаточно 60—70 мл этого раствора. Концентрацию висмута в фильтрате определяли в виде иодидного комплекса, окрашенного в желтый цвет. Выделение и определение висмута было проведено в чистых металлах — меди, олове, сурьме и высоколегированной стали. Результаты определения висмута в различных объектах приведены в табл. 1. [c.231]

    Вообще для определения олова(II) можно применить многие из реактивов, предложенных для титрования мышьяка(III) и сурьмы(III) бромат [3], иодат [4], хлорамин [5], иодхлорид [6], бихромат [7], разумеется в отсутствие растворенного кислорода воздуха. За последние годы было предложено несколько новых реактивов для определения олова в сложных смесях. Эти методы описаны в разделах Марганец и Висмут . Для определения олова(II) в присутствии титана(III) предложена метиленовая синяя, восстанавливающаяся на платиновом электроде [8, 9]. [c.227]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Анализируемый азотнокислый раствор, содержащий около 0,3 г висмута и свободный от соляной и серной кислот, осторожно йрибавляют при непрерывном перемешивании к 50 мл титрованного (1%-ного) раствора арсената калия KH2ASO4, находящегося в мерной колбочке на 100 мл, разбавляют водой до метки, хорошо перемешивают и отфильтровывают осадок арсената висмута. Для определения избытка арсената к 50 мл фильтрата прибавляют 40 мл 25%-ного раствора соляной кислоты и 1 г иодистого калия и титруют через 15—20 мин. выделившийся иод 0,1 н. раствором тиосульфата (без применения раствора крахмала). Титр раствора мышьяковокислого калия устанавливают таким же образом по тиосульфату. Кроме висмута, Валентин определял аналогичным методом магний, кальций, стронций, барий, цинк, кадмий, свинец, марганец, никель, кобальт, алюминий и хром. [c.97]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]

    Шестивлентный вольфрам не дает с 8-оксихинолин-5-суль-фокислотой каких-либо окрашенных соединений и при условиях Определения молибдена не восстанавливается, а поэтому не влияет на результаты определения молибдена. Однако в присутствии больших количеств вольфрама (больше 10 мг) нужно увеличить количество добавляемого реагента. Определению молибдена мешают ванадий, двухвалентное железо, кобальт, цинк, большие количества меди, комплексон III и винная кислота. Кальций, магний, барий, никель, кадмий, двухвалентный марганец, трехвалентный хром, алюминий, торий, небольшие количества висмута и урана, цианид, щавелевая кислота не мешают определению молибдена. [c.228]

    Разработана методика полярографического определения микропримесей висмута, меди, свинца, кадмия, цинка с применением в качестве электролита 0,05 М H l-f-0,5 М КС1. Помимо указанных элементов может быть также определен и индий с чувствительностью I-IO" %. На фоне 0,05 М NHi l + 0,02 М (NH4)2Tart-1-0,2 М NHiOH с чувствительностью 2—5-10 % могут быть определены никель, кобальт и марганец. [c.199]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Анализируемый раствор должен быть свободен от азотистой кислоты,, хлорида серебра и сульфатов. Первая образует окрашенное в красный цвет соединение с роданистоводородной кислотой хлорид серебра до некоторой степени реагирует с роданидом, а в присутствии сульфатов образуется смешанный осадок роданида и сульфата серебра 1. Кроме концентрированных растворов солей, мешающ их определению своей окраской, вредны главным образом соединения ртути (II) и палладия. Медь (I), образующая также нерастворимый роданид (стр. 290), обычно-не присутствует, так как предварительной обработкой вся медь окисляется до двухвалентной. Медь (II) не мешает определению, если отношение меди к серебру не превышает 7 10. Не мешают также мышьяк,, сурьма, свинец, висмут, кадмий, железо, марганец, цинк, никель, и кобальт. - X [c.239]

    Систематическое изучение экстракции металлов 0,207 М. раствором дибутилдитиофосфорной кислоты в четыреххлористом углероде было проведено Хендли [1329] (см. табл. 32). Щелочные, щелочноземельные и редкоземельные элементы, алюминий, хром(1П), иридий(1У), платина(1У), рутений(1У), ванадий(У), марганец(П) и железо(И) не экстрагируются. При помощи реакций вытеснения был определен следующий порядок экстрагируемости металлов палладий>золото(1) >медь(1) >ртуть(11) > > серебро(1) > медь(П) > сурьма(П1) > висмут > сви-нец(И) >кадмий>никель>цинк (lg К. = 1,22 1 Рд, = 2,77) [13271. [c.255]


Смотреть страницы где упоминается термин Марганец определение в висмуте: [c.124]    [c.35]    [c.115]    [c.89]    [c.204]    [c.690]    [c.301]    [c.538]    [c.332]    [c.402]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.456 , c.458 ]




ПОИСК





Смотрите так же термины и статьи:

Марганец определение



© 2025 chem21.info Реклама на сайте