Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температурные теплообменников

    Схемы ректификации с тепловым насосом в настоящее время получают широкое распространение в промышленности. В них тепло передается с низшего температурного уровня в конденсаторе на высший в кипятильнике. Тепло передается циркулирующим жидким хладоагентом, испаряющимся в конденсаторе и отнимающим тем самым тепло парового потока в верху колонны, и затем — парами хладоагента, которые после сжатия в компрессоре, охлаждаясь и конденсируясь, испаряют часть жидкости в низу колонны [13]. В качестве циркулирующего хладоагента используют легколетучие испаряющиеся жидкости (внешний хладоагент), например легкие углеводородные газы, аммиак и фреоны. При этом хладоагент циркулирует по внешнему контуру (рис. П-6, aj. Пары хладоагента нагреваются в теплообменнике 2, сжимаются ъ компрессоре до температуры выше температуры испарения остатка и конденсируются в подогревателе 4, при этом создается поток отгонного пара в колонне. Жидкость из подогревателя 4 после охлаждения в теплообменнике 2 дросселируется в дросселе до [c.110]


    Насыщенный раствор МЭА регенерируется в отгонной колонне, нз которой уходит смесь сероводорода и паров воды. После охлажде-вия в конденсаторе-холодильнике она разделяется в сепараторе. Сероводород выводится с установки для получения серной кислоты или элементарной серы, а вода подается на орошение в отгонную колонну. После отгонной колонны регенерированный раствор охлаждается в теплообменнике, холодильнике и возвращается в цикл. Температурный режим отгонной колонны поддерживается подачей пара в рибойлер. [c.59]

    При проектировании и выборе теплообменной аппаратуры для блока очистки газов от сероводорода очень важно правильно выбрать температурный интервал нагреваемых и охлаждаемых потоков. Теплообменники устанавливают на потоке насыщенного кислыми газами раствора МЭА для его нагрева перед поступлением в отгонную колонну за счет тепла регенерированного раствора МЭА, выходящего из нижней части колонны. Неправильно рассчитанная и выбранная теплообменная аппаратура может вызвать увеличение эксплуатационных затрат на пар, используемый на регенерацию раствора МЭА. В работе [36] приведен подробный расчет оптимального теплообмена на установках очистки газа от НаЗ и СО 2, но он требует значительного времени. На основании обобщения данных опыта эксплуатации блока очистки газов на установках гидроочистки обнаружено, что оптимальной температурой на входе в колонну является 90—100 С (15% раствор МЭА и степень насыщения кислыми газами 0,3— 0,4 моль/моль). Регенерированный раствор МЭА охлаждается в теплообменнике от 115—120 до 60—70 °С. [c.89]

    Ограничивается также температурный режим сырьевых теплообменников. Максимально допустимая температура при давлении регенерации 3,0—4,0 МПа не должна превышать 425 °С, в связи с чем температура дымовых газов, выходящих из реакторов перед-входом в сырьевой теплообменник, должна быть снижена путем смешения с холодным теплоносителем. [c.129]

    Если исходное сырье поступает из резервуаров, то для его нагрева на установке имеются теплообменники и трубчатая печь 1. Если же оно поступает в горячем виде непосредственно с АВТ, тогда сырье вводят в реакторы, минуя теплообменники и печи. В реактор колонного типа 6 вводят непрерывно сырье (с температурой 140 — 200 °С), сжатый воздух и битум — рециркулят. На верх колонны для регулирования температурного режима и для понижения концен — [c.75]


    Теплообменники кожухотрубчатые с U-образными трубами (ГОСТ 14245—69). Диаметр кожуха теплообменника — от 325 до 1400 мм, условное давление 16, 25, 40, 64 кгс/см , температура от — 30 до 450 °С. Применяются для нагрева и охлаждения жидких и газообразных сред на нефтеперерабатывающих и нефтехимических заводах. Теплообменники могут изготовляться из гладких труб или из труб с накатанными ребрами. Основные размеры и конструкции этих аппаратов мало отличаются от аппаратов, описанных выше. Особенность их — отсутствие плавающей головки. Вместо нее один конец труб имеет U-образную форму, что позволяет свободно перемещаться им при температурных напряжениях. Концы закругленных труб закреплены в неподвижной решетке теплообменника. Аналогичные подогреватели применяются в кипятильниках, устанавливаемых в блоках стабилизации, абсорбции или вторичной перегонки бензина. Все конструктивные элементы [c.174]

    Раствор экстракта с низа колонны 24 насосом 25 направляется через змеевики трубчатой печи 28 (нагрев не выше 230 °С) в эвапоратор высокого давления 29. Пары фурфурола из аппарата 29 конденсируются в теплообменнике 21, и конденсат поступает в нижнюю часть сушильной колонны 26, служащей сборником сухого фурфурола. Часть паров из эвапоратора 29, минуя теплообменник 21, направляется под нижнюю тарелку колонны для поддержания температурного режима низа колонны. [c.75]

    Экстрактный раствор, уходящий из экстрактора 39, проходит вначале теплообменник 26, где подогревается горячим селекто, уже отдавшим часть своего тепла в теплообменнике 25, затем теплообменник 30 (нагрев за счет тепла конденсации паров селекто, выделенных в колонне 40) и поступает в пропановую экстрактную колонну 31. Режим работы этой колонны давление 1,8—2,0 МПа, температура верха 60—80 С, низа 270—305 X, температура поступления раствора 150 °С. На верхнюю тарелку колонны 31 подается пропан. Температурный режим колонны 31 поддерживается за счет циркуляции части остатка при помощи насоса 36 через один из змеевиков трубчатой печи 37, где раствор нагревается до 310—320 С°. [c.78]

    При пуске теплообменников жесткого типа, как правило, сначала направляют среду в межтрубное пространство, так как корпус и трубы имеют одинаковую температуру (температурные напряжения отсутствуют), а затем вводят среду в трубы. При таком порядке заполнения аппарата теплообменивающимися средами создаются оптимальные условия для предупреждения возникновения чрезмерных температурных напряжений. При остановке аппарата доступ среды прекращают в обратном порядке. [c.155]

    Определение температурных напряжений в трубах и корпусе. При определении температурных напряжений предполагают, что решетки теплообменника не деформируются и поэтому температурные усилия распределяются равномерно на все трубы. [c.155]

    Из этих уравнений следует, что температурные усилия и напряжения не зависят от длины теплообменника. [c.158]

    Из сопоставления полученных значений напряжений видно, что, как правило, в теплообменниках жесткой конструкции температурные напряжения в трубах превалируют над напряжениями от внутреннего давления и являются обычно определяющими в расчетах на прочность и устойчивость труб и трубных решеток, в также в расчетах на прочность соединения труб с трубной решеткой. [c.159]

    Рассмотрим температурные усилия в теплообменнике жесткого типа, на корпусе которого установлен компенсатор. [c.159]

Рис. 132. Схема к расчету температурных усилий в теплообменнике с компенсатором Рис. 132. Схема к <a href="/info/619314">расчету температурных</a> усилий в теплообменнике с компенсатором
    Следует иметь в виду, что температурное усилие может растягивать или сжимать трубы. Практически, учитывая, что возможны различные варианты применения теплообменника, величину усилия Qi в формулах (153)—(157) принимают всегда положительной (в сторону запаса), считая, что трубы растянуты. [c.169]

    Если разность температур более 50°С, применяют теплообменники типа ТЛ, в которых температурные напряжения компенсируются линзовым компенсатором (рис. 113), установленным иа кожухе. Наружный диаметр линзы / обычно больше наружного диаметра кожуха на 250 мм. Компенсаторы состоят из одной или нескольких линз. Одна линза в типовых теплообменниках допускает растяжение или сжатие кожуха до 8 мм. [c.161]

    Кожухотрубчатые теплообменники. При монтаже кожухотрубчатых теплообменников необходимо обращать особое внимание на прилегание лап аппаратов к опорным конструкциям. Скользящие опоры горизонтальных теплообменников смазывают при монтаже графитовой смазкой. Болты в скользящей лапе 1 (рис. 127) должны иметь зазор в овальном отверстии опоры 3 в направлении температурного удлинения аппарата, а гайки не должны быть затянуты. [c.174]

    Теплообменники жесткой конструкции можно применять только при небольшой разности- температур трубок и кожуха (обычно не более 30—40°С). В остальных случаях необходима компенсация температурных напряжений, возникающих из-за различного теплового расширения кожуха и трубок. В теплообменниках с [c.85]


    Температурные напряжения в теплообменниках жесткой конструкции возникают при различной температу зе труб и кожуха, а также когда температура их одинакова, но трубы и кожух изготовлены из разных материалов, коэффициенты удлинения которых сильно отличаются. Рассмотрим наиболее распространенный случай, когда трубки 1 имеют более высокую температуру, чем кожух [c.94]

    В теплообменниках с плавающей головкой и с и-образными трубками температурные напряжения отсутствуют. В многоходовых теплообменниках при значительном перепаде температуры теплоносителя возможны Также температурные напряжения вследствие разности температур труб в разных точках трубного пучка. Компенсировать эти напряжения невозможно. [c.97]

    В случае значительных температурных напряжений на наруж ную трубу устанавливают линзовые компенсаторы, что значитель но усложняет конструкцию теплообменника. В нефтеперерабаты [c.101]

    Пример 5. 4. При обследовании работы пародистиллятного теплообменника и других теплообменников АВТ определены следуюпще показатели температурный режим — указан на схеме рис 5. 2 количество нефти, подогревающейся в теплообменниках, = 60 ООО кг/ч, плотность ее = 0,875 поверхность нагрева пародистиллятного теплообменника F = 320 м . [c.79]

    Одним из таких аппаратов является многослойный адиабатический реактор, в котором охлаждение между ступенями достигается посредством теплообменников. Такие реакторы широко применяют при окислении ЗОг. Реактор состоит из нескольких последовательно соединенных заполненных катализатором камер, которые работают яри адиабатическом режиме. Следовательно, в каждой камере температура повышается в направлении от входа к выходу, что конечно, противоречит идеальному режиму. Однако путем охлаждения газа, выходящего из каждой камеры, его температуру удается значительно понизить перед поступлением в следующую камеру. Короче говоря, ступенчатое изменение температур в рассматриваемой системе рассчитано а приближении к оптимальной температурной последовательности, как это показано на нижней кривой рис. 34, где в качестве координатных осей приняты степень превращения и температура (вместо объема и температуры). Чем больше число ступеней, тем ближе рабочие характеристики системы приближаются к оптимальным характеристикам, предсказываемым теорией. [c.149]

    Для эффективной работы цеолитового блока очистки температура воздуха должна быть не выше 6—8° С. Необходимое доохлаждение воздуха может быть достигнуто модернизацией теплообменника и оснащением установки ожижителем или использованием какого-либо внешнего холодоносителя. В настоящее время изучают возможности оснащения цеолитовых блоков специальными автоматическими фреоновыми холодильными установками, обеспечивающими доохлаждение перерабатываемого воздуха. Эти холодильные установки позволяют также исключить подогрев воздуха, который происходит в начальный период работы блока очистки после регенерации и приводит к некоторому нарушению температурного режима воздухоразделительной установки. [c.121]

    В, С, О, I. Видно, что слабое увеличение Т за линию L приводит к резкому скачку температуры от О V. Н. Аналогично, при постепенном уменьшении Т, процесс проходит последовательность стационарных режимов, соответствующих точкам I, Н, С, Р, с дальнейшим резким падением до точкп В и далее к точке А. Это приводит к гисте-резпсным кривым, изображенным на рис. IX.20. Неопубликованные вычисления для противоточного реактора с независимым теплоносителем показывают еще более резкие эффекты. Можно сказать, что в реакторах с противоточным теплообменником тепло реакции, выделившееся в некоторой точке, вместо того, чтобы вымываться потоком, как это было бы в отсутствие обмена теплом с теплоносителем, может возвращаться вверх но течению реагирующей смеси, способствуя образованию высоких температурных пик. К аналогичным эффектам может приводить продольное перемешивание потока, как это было показано в работе Ван Хирдена и в более поздней статье Амундсона (см. библиографию на стр. 303). [c.285]

    Температурный режим колонны поддерживают с помощью подогревателя, обогреваемого водяным паром. Верхние продукты колонны — сероводород и пары воды — охлаждаются в кочденсаторе-хо-лодпльнике и разделяются в сепараторе на сероводород и воду. Вода возвращается в колонну на орошение. Сероводород используется для получения серной кислоты или Серы. Выведенный из колонны регенерированный раствор МЭА после охлаждения в теплообменнике п холодильнике вновь возвращается в цикл. [c.52]

    Из абсорберов насыщенный раствор МЭА, предварительно нагретый в теплообменнике за счет теплообмена с регенерированным раствором МЭА, направляется в отгонную колонну. Для поддержания температурного режима отгонной колонны часть регенерированног раствора МЭА циркулирует через вертикальный термосифонный рибойлер, обогреваемый водяным паром. [c.53]

    Раствор МЭА, насыщенный сероводородом, из абсорберов для очистки газов поступает в дегазатор, где при снижении давления пз раствора МЭА выделяются растворенные газообразные углеводороды и бензин. Выделившийся бензин направляется в стабилизационную колонну. Дегазированный насыщенный раствор МЭА, предварительно нагретый в теплообменниках, поступает в отгонную колонну, температурный режим в которой поддерживается циркулирующим через термосифонный паровой рибойлер раствором МЭА. Пары воды и сероводорода, выходящие из колонны, охлаждаются в воздушном конденсаторе-холодильнике, доохлаждаются в водяном холодильнике, после чего разделяются в сепараторе, где также предусмотрен отстой бензина и его ВЫВОДЕ стабилизационную колонну. Сероводород из сепаратора направляется на производство серной кислоты илн элементарной серы. Из нижней части колонны выводится регенерированный раствор МЭА, который после последовательного охлаждения в теплообменниках, воздушном и водяном холодильниках вновь возвращается в цикл. Для удаления механических примесей из насыщенного раствора МЭА предусмотрено фильтрование части раствора. [c.56]

    По диаграмме для вычисленных величин Р тл Н определяются коэффициенты е. Среднелогарнфмический температурный напор в теплообменнике вычисляется по формуле [c.19]

    Для обеспечения автотермичности процесса и оптимального температурного режима в колонне размещают теплообменник для нагрева до температуры реакции азотоводородной смеси выходящим из катализаторной коробки газом. [c.31]

    РИВШЕИХСЯ И дающих много кокса фракций и получать чистую фракцию для реактора пз сырья, богатого солями и смолами. Основной недостаток схемы — ее относительная сложность. На,фиг. 12 указан примерный температурный режим секции. Сепараторы работают под давлением до 1,4 ати. В верху сепаратора устанавливают иногда две-три орошаемых газойлем тарелки для освобождения наров от капелек жидкости. Приемник и горячий насос перед печью не обязательны, однако их исключение привело бы к необходимости повышения давления в теплообменниках и установки более мощного насоса для холодного сырья. [c.40]

    Температурные напряжения в этом теплообменнике определяют по формулам (135), в которых следует вместо площадей поперечного сечения стенок корпуса и труб подставить площади поперечного сече1П1я стенок труб соответственно наружной н внутренней и обозначить и а,, соответственно через температурные напряжения во внутренней и наружной а трубах. [c.183]

    Твплообменники с жестким кожухом и неподвижными трубными решетками применяют при разности температур между двумя средами не более 50° С. При большей разности температур в конструкции теплообменника вследствие температурных деформаций возникают значительные напряжения, которые могут привести к нарушению соединения труб с решетками или к разрыву кожуха. [c.161]

    Наиболее широко применяют пять основных типов кожухотрубчатых теплообменников 1) жесткой конструкции (с неподвижными трубными решетками) 2) с компенсаторами температурных напряжений 3) с П-образнымн трубками 4) с плавающей головкой 5) с плавающей головкой и компенсатором на ней.  [c.84]

    Жесткая конструкщ1Я ярименяется в случаях, когда разность температур наружной и внутренней труб невелика и когда ие требуется механическая чистка труб. Теплообмениые аппараты типа ТТ-с применяются в случаях, когда необходима компенсация температурных расширений. Теплообменные аппараты типа ТТ-р применяются а случаях, когда при эксплуатации теплообменника требуется полный демонтаж внутренних труб. [c.109]

    По межтрубному пространству аппараты выполняют как одноходовыми, так и щногоходавыми. Диаметр корпуса изготовляемых теплообменников может быть 325, 478, 630, и 1 020 мм. Для компенсации температурных деформаций эти аппараты могут быть изготовлены с линзовыми компенсаторами на корпусе. Применение линзовых компенсаторов ограничивается условным давлением 6 кГ/сле . По требованию заказчика теплообменные аппараты с неподвижными трубными решетками могут быть изготовлены для установки в горизонтальном или вертикальном положении. [c.212]

    Зная темшературу стенок теплообменника, можно решить вопрос о комленсации температурных деформаций. Если давление в межтрубном пространстве не превышает 16 кгс/см , то лри А/ 50°С для компенсации температурных деформаций предусматривают линзовые компенсаторы при более высоком давлении разрабатываются теплообменники с плавающей головкой. [c.91]

    Все трубопроводы, соединяющие теплообменники между собой или с другими аппаратами, по которым транспортируются жидкости или гaзьf с температурой, отличающейся от температуры материала трубопровода при монтаже больше чем на 50—60 °С, должны быть проверены на самокомпенсацию температурных деформаций (см. стр. 207). [c.191]

    В связи с этим обеспечить взрывобезопасность процесса фиксированием содержания углеводородов вне их пределов взрываемости практически невозможно. Дополнительную сложность в стабилизации содержания горючего на безопасном уровне вносят такие трудно контролируемые факторы, как пропуск в теплообменниках нефть — гудрон на АВТ, неполное отделение легких углеводородов на деасфальтизации, образова--ние лепких углеводородов в процессе окисления и при повышении температуры в нижней части вакуумной колонны (легкий крекинг), что практически обусловливает непредсказуемость состава газовой фазы. Содержание углеводородов в этой фазе может меняться в широких пределах — от 0,12 [263] до 4% (об.) [283]. В соответствии с ГОСТ 12.1.004—76 ( Пожарная безопасность ) нижний концентрационный предел воспламенения снижается с утяжелением углеводородного топлива следующим образом 1% (об.) для бензинов, 0,6% (об.) для керосинов и 0,3—0,4% (об.) для дистиллятных масел с молекуляр- -ной массой 260—300. Молекулярная масса отгона — 250 [262] (260 [2]) — близка к молекулярной массе дистиллятных масел, поэтому нижний концентрационный предел его можно принять в пределах 0,3—0,47о (об.). Для определения безопасной концентрации отгона необходимо (в соответствии с названным стандартом) учесть влияние температуры и коэффициента безопасности. Температурный фактор оценивается lio формуле [c.175]

    Изготовляют ИХ С поверхностью теплообмена И—350 для работы под давлением 2—25 ат. Трубные пучки выполняют из стальных трубок диаметром 25 или 38 мм и длиной 3—6 м. Теплообменники этого типа экономичны и имеют минимальное число соединений на прокладках. Вес аппарата, отнесенный к м наружной поверхности нагрева, составляет 38,8 кГ для гладких труб и 22 кГ — для сребренных. Недостатки таких аппаратов невозможность механической очистки межтрубного пространства, отсутствие устройств для компенсации разности температурного удлинения труб и корпуса. Последний недостаток можно устранить применением компенсатора на кожухе, что, однако, усложняет конструкхщю и повышает стоимость аппарата. [c.256]

    Из рис. 5. 2 видно, что пародистиллятный теплообменник с меньшим температурным перепадом горячего потока включен после гудронных теплообменников. Если по действующей схеме теплообмена определить (по рпс. 4. И) среднюю разность температур в гудронных и пародистиллятном теплообменниках, то получим, что средняя разность температур для первых Д i p = = 234° С, для второго Дгср = 89° С. Но известно, что чем выше средняя разность температур, тем эффективнее условия теплообмена. В пашем случае целесообразнее переключить пародистиллятный теплообменник так, как это показано на рис. 5. 3. [c.80]


Смотреть страницы где упоминается термин Температурные теплообменников: [c.214]    [c.41]    [c.160]    [c.173]    [c.86]    [c.93]    [c.204]    [c.209]    [c.257]   
Пожарная безопасность предприятий промышленности и агропромышленного комплекса (1987) -- [ c.141 , c.143 ]




ПОИСК







© 2025 chem21.info Реклама на сайте