Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Латексы синтетические свойства

    ПОЛУЧЕНИЕ, СВОЙСТВА И ПРИМЕНЕНИЕ СИНТЕТИЧЕСКИХ И ИСКУССТВЕННЫХ ЛАТЕКСОВ [c.586]

    Ассортимент каучуковых латексов, выпускаемых промышленностью, постоянно растет и изменяется. Это обусловлено дифференцированием потребностей различных отраслей, латексы, и конкуренцией со стороны других новых синтетических материалов. Сведения об ассортименте и свойствах выпускаемых латексов периодически публикуются, поэтому в настоящей работе лишь в общем виде перечислены основные типы латексов, выпускаемых в СССР, и приведены примерные рецепты получения некоторых из них, а также их основные свойства (табл. 3). [c.603]


    Из латексов получают многие материалы, изготовление которых непосредственно из каучука вообще невозможно или крайне затруднительно (пенорезина, водоразбавляемые краски, искусственные кожи, адгезивы и др.). Поэтому еще до второй мировой войны латекс натурального каучука заменил каучук при изготовлении ряда изделий, несмотря на недостаточную разработанность технологии его использования (и более высокую стоимость каучука в латексе). Появление синтетических латексов сначала в виде полупродуктов эмульсионного каучука, а затем и в виде готовых продуктов со специфическими свойствами привело к возникновению ряда принципиально новых производств. [c.586]

    Латексы являются типичными представителями коллоидных систем, поскольку глобулу полимера с адсорбированным иа нем ионным стабилизатором мож но рассматривать как мицеллу. В то Hte время латексы представляют собой весьма удобную модель для изучения процессов коагуляции. Дисперсная фаза латекса — синтетический полимер, как правило, достаточно химически инертна и в отсутствие стабилизатора не взаимодействует с водой (не гидратирована). Глобулы латекса имеют сферическую форму и представляют собой твердые полимерные частицы. Однако в результате специфических свойств полимера (высокой аутогезионной способности) в латексах возможны явления, подобные коалесценции капелек эмульсии, приводящие к полному или частичному слиянию полимерных частиц. Поэтому латексы сочетают свойства систем с твердой и жидкой дисперсной фазой (золей и эмульсий). Агрегативная устойчивость синтетических латексов обеспечивается адсорбционным слоем поверхностно-активного вещества ионного или неионного характера. [c.108]

    ЛАТЕКСЫ СИНТЕТИЧЕСКИЕ Таблица 1. Свойства некоторых синтетических латексов [c.25]

    Физические и химические свойства пленок, образованных из синтетических латексов, аналогичны свойствам пленок, получаемых из твердого каучука. [c.482]

    Широкое применение натурального латекса для производства различных резиновых изделий способствовало глубокому изучению свойств латексов синтетических полимеров с целью их практического использования. Изучение закономерностей и быстрое развитие процессов эмульсионной полимеризации позволило в короткие сроки создать промышленное производство нескольких типов товарных синтетических латексов. [c.465]

    Выделение каучука из латекса. Агрегативную и кинетическую устойчивость синтетических латексов, учитываемую на всех стадиях технологического процесса их получения и переработки, определяет наличие на поверхности латексных частиц адсорбционного слоя из молекул гидратированного эмульгатора. Свойства межфазной поверхности — адсорбированного слоя гидратированных молекул поверхностно-активных веществ (ПАВ) со структурой, близкой к мицеллярной [26], — определяют устойчивость латекса при транспортировании насосами, при хранении, при выделении каучука из латекса. Специфичность воздействия отдельных факторов на латексы привела к делению агрегативной устойчивости на отдельные виды стабильности — к механическому воздействию, к электролитам, к замораживанию, к тепловому воздействию, к действию растворителей [27], но во всех случаях при нарушении устойчивости происходит снятие или преодоление одного и того же по своей природе стабилизующего барьера [28—30]. [c.255]


    Рассматривая теоретические принципы нарушения агрегативной устойчивости синтетических латексов электролитами, надо иметь в виду, что агрегативная устойчивость этих коллоидных систем обусловливается наличием адсорбционного слоя, который имеет достаточно высокий заряд диффузного ионного слоя ( -потенциал для большинства латексов равен 100- 60 мВ) [32], обеспечивающий стабилизацию таких систем за счет электростатических сил отталкивания, и достаточно высокую степень гидратации, наряду с вязкоупругими свойствами и достаточной механической прочностью. С другой стороны, стабилизация синтетических латексов осуществляется в большинстве случаев ионными ПАВ, у которых при введении электролитов в систему резко меняется растворимость и происходит их высаливание из раствора. [c.255]

    Для улучщения свойств бумаги синтетические латексы вводят на различных стадиях ее изготовления при размоле бумажной массы в ролле (проклейка), при пропитке бумажного полотна и, наконец, путем нанесения на поверхность бумаги [см., например, 88, 89]. [c.611]

    С другой стороны, синтетические латексы находят все новые области применения, а это, в свою очередь, связано с появлением новых специфических требований к свойствам латексов. [c.613]

    К каучукам относят эластичные высокомолекулярные соединения, способные под влиянием внешних сил значительно деформироваться и быстро возвращаться в исходное состояние после снятия нагрузки. Упругие свойства и прочность каучуки сохраняют в сравнительно широком интервале температур. Каучуки подразделяются на натуральные и синтетические. В течение долгих лет получали только натуральный каучук из млечного сока тропического дерева гевеи, называемого латексом. [c.222]

    Однако далеко не всегда целесообразно разрабатывать новые типы латексов, особенно если ожидаемая потребность в них невелика. В таких случаях часто удается модифицировать свойства готовых латексов введением различных добавок. Такие приемы, давно уже широко используемые для модификации свойств латексов натурального каучука, имеют большое значение и при работе с синтетическими латексами. [c.613]

    Глава 29 Получение, свойства и применение синтетических и 5 искусственных латексов [c.752]

    Имеется достаточно оснований утверждать, что структурное отталкивание, обусловленное свойствами граничных гидратных прослоек, во многом определяет агрегативную устойчивость синтетических латексов. К такому заключению приводят данные двоякого рода. [c.189]

    С одной стороны, в результате ряда экспериментальных исследований установлено наличие у поверхности латексных частиц, модифицированной адсорбционными слоями эмульгаторов,, гидратных прослоек, эффективная толщина которых имеет порядок 10 м и зависит от ряда факторов степени насыщения адсорбционных слоев, температуры, содержания электролитов в латексе и др. Однако эти данные сами по себе недостаточны для того, чтобы делать какие-либо выводы о влиянии особых свойств и структуры граничных прослоек водной среды на агрегативную устойчивость синтетических латексов. Как будет здесь показано, к представлению о существовании неэлектростатического фактора стабилизации — структурного отталкивания, обусловленного граничными гидратными прослойками, — приводят результаты исследований кинетики коагуляции латексов [c.189]

    Сырье и рецептура. Для изготовления Г. р. общего назначения применяют 1) натуральный центрифугированный латекс 2) синтетич. бутадиен-стирольный латекс, получаемый низкотемпературной эмульсионной полимеризацией при соотношениях (по массе) бутадиен стирол, равных 75 25 или 70 . 30 3) смеси натурального и бутадиен-стирольного латексов. Г. р. со специальными свойствами изготовляют на осиове бутадиен-нитрильного (масло- и бензостойкие) и -хлоропренового (огнестойкие) латексов. Кроме упомянутых латексов, в производстве Г. р. используют также карбоксилированные бутадиеновый и бутадиен-стироль-ны11 латексы и водные дисперсии синтетич. изопренового каучука (см. Латекс натуральный, Латексы синтетические). Латексы для Г. р. отличаются высоким содержанием сухого вещества (60—70%), низким поверхностным натяжением (35—40 мн/м, илп дин/см), хорошей текучестью [вязкость по Брукфилду, определенная на вискозиметре марки LVT-3 при частоте вращения шпинделя 12 об/мин, составляет 150—700 [мн-сек)/м , пли спз]. [c.325]

    Виды адгезивов для корда. Наибольшее распространение получили адгезивы на основе натурального, бутадиен-стирольного, карбоксилатного и винилпириди-нового латексов (см. Латексы синтетические). В качестве активных добавок в латексные составы вводят белки (казеин, альбумин и др.) и синтетич. смолы (в последние годы в основном используют резорцино-формальдегидные смолы в виде фенолоспиртов или низкомолекулярных олигомеров). В пропиточные составы на основе латексов можно вводить дисперсии активных наполнителей. Это приводит к получению пленок адгезива с более высокими физико-механич. свойствами, что способствует повышению прочности связи в резино-кордной системе. Обычно применяют адгезивы след, состава (в мае. ч.) латекс — 100, резорцино-формальдегидная смола — 10—25 (иногда также канальная газовая сажа — 20—40). [c.558]


    Способы переработки латекса существенно зависят от его коллоидпо-химич. свойств, определяемых природой и содержанием эмульгатора, степенью насыщенности поверхности глобул эмульгатором, размером глобул, вязкостью, концентрацией, стойкостью к действию высоких и низких темп-р и др. Латексы, стабилизированные аяионоактивпыми эмульгаторами, позволяют получать Л. и. методами желатинирования, коагуляпт-ного макания п ионного отложения (см. ниже). Эти методы неприменимы для латексов с неионогенными эмульгаторами, обладающих высокой агрегативной стабильностью. Высокое содержание эмульгатора, обеспечивающее полное насыщение поверхности глобул латекса, позволяет вводить в смесь значительное количество наполнителей, но обусловливает низкие меха-нич. свойства и невысокую водостойкость Л. и. Кроме того, высокая (более 60%) степень насыщенности поверхности глобул эмульгатором может отрицательно сказываться на получении Л. и. указанными выше методами. О свойствах латексов см. Латекс натуральный, Латексы синтетические. [c.19]

    Широко используют все виды ПАВ при получении и применении синтетич. полимеров. Важнейшая область потребления мицеллообразующих ПАВ — производство полимеров методом эмульсионной полимеризации. От типа и концентрации выбранных ПАВ (эмульгаторов) во многом зависят технологич. и физико-химич. свойства получаемых латексов (см. Эмульсионная полимеризация, Латексы синтетические). ПАВ (гл. обр. высокомолекулярные) применяют также для облегчения концентрирования каучуковых латексов методом сливкоотделения, для повышения агрегативной устойчивости натурального или синтетич. латекса. Иногда в латекс с целью его сенсибилизации, т. е. увеличения чувствительности к действию коагулирующих факторов, вводят ПАВ, ослабляющие защитное действие стабилизаторов. ПАВ используют также при суспензионной полимеризации. Обычно применяют высокомолекулярные ПАВ — водорастворимые полимеры (поливиниловый спирт, производные целлюлозы, растительные клеи и т. п.). ПАВ как обязательные компоненты содержатся в водных дисперсиях полимеров, получаемых механич. диспергированием или путем образования новой полимерной фазы из пересыщенного р-ра. Смешением лаков или жидких масляносмоляных композиций с водой в присутствии эмульгаторов получают эмульсии, применяемые при изготовлении пластмасс, кожзаменителей, нетканых материалов, импрегнированных тканей, водоразбавляемых красок и т. д. [c.337]

    Исследованы два метода синтеза смол путем одновременной загрузки мочевины, формалина и бутанола с последующим обезвоживанием смолы по окончании реакции и путем предварительной конденсации мочевины и формальдегида в нейтральной или щелочной среде с последующей этерификацией полученных метилолмочевин бутанолом в кислой среде. Исследовано также влияние основных факторов производственного процесса на свойства смол и покрытий на их основе. Установлено, что вязкость смолы зависит не только от степени конденсации,, но и в значительной мере от содержания метилольных групп евз В патентах приводятся различные лаковые композиции совмещенных с алкидными смолами мочевиноформальдегидных смол композиция для покрытий, образующая при отверждении твердые, глянцевые эластичные пленки (20—70% алкидной смолы, 10—70% мочевиноформальдегидной смолы и -10— 70% латекса синтетического полимера, например, полистирол, поливинилхлорид и др.) лакокрасочные покрытия с повышенной стойкостью к действию дезинфицирующих сред из глифталевых мочевиноформальдегидных смол и полимеров дивинилацетилена бензостойкие покрытия горячей сушки из мочевиноформальдегидных смол в сочетании с алкидными смолами алкидномочевинные лаки кислотного отверждения с применением алкилового эфира фосфорной кислоты (этиловый эфир) и алкидно-карбамидный лак холодной сушки для отделки футляров радиоприемников .  [c.372]

    Свойства изделий, изготовленных из латекса или с применением латекса, Определяются свойствами полимера латекса. Придание изделию необходимых свойств обеспечивается выбором соответствующего типа полимера. Например, изделия с высокой маслостойкостью могут быть получены при использовании бутадиен-нитрильных и хлоропреновых латексов для получения латексных лленок, имеющих высокую адгезию к искусственным и синтетическим волокнам, применяют латексы, полимер которых содержит функциональные группы (карбоксилсодержащие, бутадиен-метилвинилпиридиновые и др.). [c.250]

    Бутадиен-стирольные латексы — наиболее массовый тип синтетических латексов. Они выпускаются в широком диапазоне соотношений мономеров и концентраций. Варьируя соотношение мономеров, можно значительно менять физико-механические свойства полимера. Наиболее многотоннажным является производство бутадиен-стирольных латексов для пенорезины. Их получают низкотемпературной (5°С) полимеризацией бутадиена со стиролом в отношении 70 30 (СКС-ЗООХ). После отгонки непрореагировавших мономеров их подвергают агломерации (или соагломерации с полистирольным латексом) и затем концентрируют. Так получают латексы СКС-С и СКС-С-30. [c.603]

    Казеинат аммония применяется для стабилизации синтетических латексов в клеевых композициях. Например, бутадиен-стирольный латекс СКС-65 ГПБ, применяемый в полимерцементных клеях, стабилизируют казеинатом аммония (см. гл. 3). Загущение бутадиен-стироль-ного латекса казеинатами является результатом гидрофобного взаимодействия молекул казеината с дисперсной фазой и гидрофильного взаимодействия с дисперсионной средой латекса. Варьируя свойства латекса и загустителя, можно эффективно влиять на процесс загущения. [c.31]

    Смола ВРС растворяется в водных растворах слабых оснований (аммиак, амины). Ее водно-аммиачные растворы совмещаются с латексами синтетических каучуков (бутадиен-нитрильных, бутадиен-сти-рольпых, хлоропреновых), образуя композиции, которые при 30%-ном содержании смолы ВРС вулканизуются без добавления агентов вулканизации. Получаемые пленки обладают прочностью, водо-, масло- и бензостойкостью и высокой адгезией к металлам, вследствие чего их можно применять в качестве антикоррозионных покрытий по металлу, пропиточных составов и для изготовления различных резиновых изделий. Введение 10—30% смолы ВРС в бутадиеп-нитрильный латекс СКН-40 повышает адгезию к металлам в 3—4 раза и прочность пленок на 50—100%. Механические свойства пленок не изменяются после прогрева при 70° С в течение 2 ч в 50%-ной серной кислоте и концентрированной соляной кислоте. [c.60]

    Частицы синтетических латексов в общем меньше и более однородны по размерам, чем частицы натурального латекса. Разработаны такие процессы полимеризации, которые дают возможность получать латексы с частицами заданной величины. Величиной частиц обусловливаются многие свойства латекса. Синтетические латексы с частицами размером 0,1 [)- менее подвержены самопроизвольному расслаиванию или сливкоотделению, чем натуральный латекс по этой причине концентрирование таких латексов методом центрифугирования встречает затруднения. [c.512]

    Частички натурального и синтетического латексов несут отрицательный заряд. Потенциал этих частиц обычно колеблется в пределах от 40 до 90 мв. Своим зарядом частицы латексов обязаны адсорбированному на их поверхности стабилизатору (эмульгатору). Разработаны такие процессы полимеризации, которые дают возможность получать латексы с частицами заданной величины. Величиной частиц обусловливаются многие свойства латекса. Синтетические латексы менее подвержены самопроизвольному расслаиванию или сливкоотделению, чем натуральный [c.481]

    Синтетический латекс представляет собой коллоидную дисперсию типа масло в воде. Частицы каучука (масляная фаза) в латексе имеют обычно размеры от нескольких десятков до сотен нанометров (редко менее 10 и более 1000 нм). Как всякая дисперсная система с развитой поверхностью раздела, латексы термодинамически нестабильны. Для сохранения коллоидных свойств системы в течение длительного времени поверхность раздела следует гид-рофилизовать, что достигается введением в систему дифильных поверхностно-активных веществ (ПАВ), например солей карбоновых кислот различной природы и строения. Адсорбированные на поверхности раздела гидратированные молекулы и ионы ПАВ образуют защитные слои. Эффективная толщина таких слоев, оцененная по данным вискозиметрических [4, 5], дилатометрических [6], термографических [7] измерений, изменяется от нескольких единиц до десятков нанометров в зависимости от природы и количества образующего их эмульгатора, а также от степени заполнения поверхности частиц адсорбированным эмульгатором (так называемой адсорбционной насыщенности). Адсорбционная насыщенность синтетических латексов обычно лежит в диапазоне от [c.587]

    Водные дисперсии сажи часто смешивают с латексом синтетического каучука до его коагуляции. Для успешного проведения этой операции дисперсии сажи следует готовить весьма тщательно, строго соблюдая определенные условия [88]. При недостаточном количестве диспергатора дисперсия будет неоднородной и латекс может флоккулировать или даже коагулировать. Полимеризация может быть проведена уже с добавками сажи с применением дополнительных количеств мыла или других поверхностноактивных диспергаторов, пригодных для этой цели [89], например с соединением типа лигнина [90]. В качестве добавок к каучуковым латексам применяют также дисперсии антиокислителей и других ингредиентов резиновых смесей [91 ]. Водонерастворимые диспергаторы и всполюгательные вещества, например стеариновая кислота, улучшающие распределение сажи в каучуке, применяются непосредственно в процессах измельчения и смешения. При этом остается неясным, оказывают ли эти добавки определенное влияние на процесс диспергирования или они улучша от лишь механические свойства самого каучука [92.  [c.482]

    Нитроспирты, полученные из низкомолекулярных нитропарафннов, могут быть использованы также в качестве растворителей. Они проявляют, напрцмер, специфическую растворимость для клейковины, маисового проламина, которые содержат триптофан или цистин и лизин и имеют все более увеличивающееся применение в промышленности синтетического волокна [172]. Кроме того, нитроспирты могут служить мягкими окислителями и все чаще используются как сырье для производства эмульгирующих и флотационных средств и далее для производства высококипящих мягчительных средств (для отпуска стали при отжиге — прим. переводч.). Их свойства снижать термочувствительность каучуковых латексов будет также использовано в технике. [c.327]

    В книге на высоком научном уровне описывается современное состояние теории и практики производства важнейших типов синтетических каучуков и соответствующих латексов. В ней на основе единого плана рассматриваются следующие вопросы строение и свойства эластомеров, современные представления о механизмах полимеризации, синтез и свойства карбоцепных, гетероцеп-ных и других эластомеров, получение и свойства синтетических [c.5]

    В связи с разработкой технологии получения синтетических латексов из растворов отгонкой растворителя и мономера заслуживают внимания исследования по прививке в эмульсии это дает возможность удалить до модификации непрореагировавший мономер и применять окислительно-восстановительные системы. Прививка метакриловой кислоты в латексе сополимера бутадиена и стирола [46] наряду с улучшением свойств каучука повышает стабильность латекса. Ясно также, что прививка кислот к полиизопрену в растворе сделает полимер поверхностно-активным и облегчит создание эмульсий и латексов. [c.238]

    Из числа алкилированных фенолов, которые не относятся к пространственно-затрудненным, для некоторых видов каучука (например, алкиленоксидных) рекомендуется тиоалкофен БМ. Антиоксидант АО-20 (алкофен МБ) рекомендуется для стабилизации синтетических латексов (самостоятельного применения для стабилизации синтетических каучуков он не находит). Для стабилизации синтетических латексов особый интерес представляют модификации этого антиоксиданта (АО-20С), которые обладают свойством легко эмульгироваться, j [c.638]


Смотреть страницы где упоминается термин Латексы синтетические свойства: [c.445]    [c.21]    [c.339]    [c.328]    [c.561]    [c.250]    [c.322]    [c.70]    [c.250]    [c.322]    [c.4]    [c.595]   
Общая технология синтетических каучуков Издание 3 (1955) -- [ c.400 , c.405 ]

Общая технология синтетических каучуков Издание 4 (1969) -- [ c.459 ]

Основы технологии синтеза каучуков (1959) -- [ c.512 ]




ПОИСК





Смотрите так же термины и статьи:

Латекс синтетический

Латексы

Латексы свойства

Свойства синтетического



© 2025 chem21.info Реклама на сайте