Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидная влага

    К внутренней относят коллоидную и гидратную влагу. Коллоидная влага является составной частью топлива. В его массе она распределяется очень равномерно. Количество коллоидной влаги зависит от химической природы и состава топлива и содержания влаги в атмосферном воздухе. По мере увеличения степени углефикации топлива содержание коллоидной влаги падает. Много коллоидной влаги в торфе, меньше в бурых углях и мало в каменных углях и антрацитах. Гидрат-, ная или кристаллизационная влага химически связана с минеральными примесями топлива, главным образом сернокислым кальцием и алюмосиликатом. Гидратной влаги в топливе содержится мало, она становится заметной в многозольных топливах. При подсушке испаряется часть коллоидной влаги, но практически не изменяется содержание гидратной влаги. Последняя может быть удалена лишь при высоких температурах. [c.18]


    Влага топлива подразделяется на гидратную, коллоидную, капиллярную и поверхностную. Гидратную и коллоидную влагу называют связанной, капиллярную и поверхностную — свободной. [c.123]

    Вязкость масел и смазок, несомненно, влияет и на другие эксплуатационные характеристики, например на гигроскопичность, влаго- и газопроницаемость. Повышение вязкости замедляет диффузию газов и влаги через слой смазочного материала. Вязкость дисперсионной среды —один из важнейших факторов, определяющих коллоидную стабильность пластичных смазок. Увеличение вязкости резко уменьшает отделение масла из смазок при хранении. [c.278]

    С ростом pH диффузия воды, влагопроводность и миграция водорастворимых соединений в торфяных системах снижаются [224, 229]. Однако на перенос влаги и растворенных веществ в данном случае определенное влияние оказывают также изменения структуры и емкости обмена торфа. С ростом pH органические компоненты торфа интенсивно набухают, уменьшая тем самым активную капиллярную сеть и влагопроводность мате риала. При снижении pH в торфе наблюдается процесс, обратный описанному. Рыхлые гуминовые образования торфа претерпевают компактную коагуляцию, активизируя капиллярную сеть и, соответственно, перенос влаги в материале. По характеру зависимости а от pH торфяные системы при рН 4, согласно [218], можно отнести к коллоидным капиллярно-пористым, а при рН>4 — к типичным коллоидным. Кроме того, при низких значениях pH концентрация ионов в дисперсионной среде торфа возрастает, а при высоких pH, наоборот, снижается. Это является следствием перехода ионов из обменного состояния в раствор. [c.75]

    Большой интерес для очистки сточных вод, растворенные вещества которых могут легко переходить в коллоидную форму, представляют динамические мембраны. К этому типу сточных вод относятся, в частности, промывные воды гальванических производств. Эти воды отличаются высокой токсичностью и перед сбрасыванием в водоемы подвергаются глубокой очистке. В настоящее время наиболее распространены химические методы очистки, характеризующиеся высокой стоимостью и большим расходом химических реагентов. Так, очистка хромсодержащих сточных вод включает стадии восстановления шестивалентного хро ма до трехвалентного сульфатом натрия или серной кислотой, нейтрализации полученного раствора едким натром илп гидратом окиси кальция, отделения полученного осадка Сг(ОН)з в отстойниках. Причем на 1 кг СгОз расходуется около 5 кг кислот и щелочей. Указанные методы имеют и ряд других недостатков. Так, осадок, полученный в отстойниках, содержит много влаги и подвергается обезвоживанию на вакуум-фильтрах. Высушенный осадок, как правило, не перерабатывается и вывозится на захоронение. [c.317]


    Если твердое тело может поглощать влагу или находится во влажном состоянии, то, как правило, оно является пористым. Большинство пористых, особенно высокопористых тел, можно представить как более или менее жесткие пространственные структуры — сетки или каркасы. Их в коллоидной химии называют гелями. Это уголь, торф, древесина, картон, бумага, ткани, зерно, кожа, глина, почвы, грунты, слабообожженные керамические материалы и т. д. Пористые тела могут быть хрупкими или обладать эластическими свойствами. Их часто классифицируют по этим свойствам. Пористые материалы обладают значительной и разной адсорбционной способностью по отношению к влаге, которая придает им определенные свойства. На практике в качестве адсорбентов. предназначенных для извлечения, разделения и очистки веществ, применяют специально синтезируемые высокопористые тела. Эти тела кроме большой удельной поверхности должны обладать механической прочностью, избирательностью и рядом других специфических свойств. Наиболее широкое применение находят активные угли, силикагели, алюмогели, цеолиты. [c.129]

    Огромное значение имеет коллоидная химия в земледелии. Почва является сложнейшей коллоидной системой. Размер и форма частиц почвы, наряду с их природой, определяют водопроницаемость и поглотительную способность почвы, которые в свою очередь влияют на урожайность. Пески, обладающие невысокой дисперсностью, легко пропускают воду, высокодисперсные же глины, наоборот, хорошо удерживают влагу. Присутствие щелочей повышает дисперсность и гидрофильность почв. В противоположность этому соли кальция коагулируют почву и понижают ее гидрофильность. На этом основано известкование почвы, применяемое для того, чтобы понизить способность почвы удерживать влагу. В последнее время широко применяются так называемые структурирующие агенты на основе некоторых полимеров, внесение которых в почву устраняет эрозию и придает почве желательные свойства. [c.30]

    Иногда учитывают и так называемую осмотическую влагу, обусловливаемую избирательной диффузией влаги через угольное вещество, имеющее коллоидное строение и адсорбционную способность отдельных компонентов ископаемых углей. [c.214]

    Предполагается, что в этих, относительно устойчивых системах частицы собраны в плотные, небольшие агрегаты, разделенные прослойками воды, в которой они перемещаются сравнительно свободно. С ростом т агрегаты разрушаются и частицы образуют прочную пространственную сплошную сетку, хотя и менее плотную, чем начальная структура, но ограничивающую движение частиц увеличение объема приводит к всасыванию влаги в дилатантную область извне. Наглядным примером этого явления может служить высыхание берегового песка вокруг свежего следа ноги. Явление дилатансии весьма нежелательно во многих технологических процессах, поскольку требует повышения расхода энергии на перемешивание, нарушает работу коллоидных мельниц и др., борьба с ним возможна посредством повышения устойчивости системы. Дилатансия свойственна также некоторым растворам полимеров. [c.268]

    Катализатор хромит меди СиО-СгаОд получают следующим образом. Растворяют в воде 261 г трехводного нитрата меди и 31,3 г нитрата бария, доводят объем до 900 мл, добавляя нужное количество воды, нагревают до 80° и приливают 720 мл водного раствора, 151,2 г бихромата аммония и 150 мл 28%-ного аммиака. Осадок отфильтровывают, сушат при температуре 75—80° и измельчают. После измельчения его делят на три порции и каждую из них подвергают термическому разложению, нагревая, при перемешивании, в фарфоровой чашке на пламени горелки, причем после начала разложения, не прекращая перемешивания массы, отставляют горелку. Выделяется большое количество газов, и масса чернеет. После тщательного перемешивания массу охлаждают, соединяют три порции вместе, обрабатывают 600 мл 10%-ной уксусной кислоты, фильтруют, промывают водой (6 раз, порциями по 100 мл), сушат при температуре 115° и измельчают. Получают около 150 г катализатора . Нитрат бария плохо растворим в воде, поэтому лучше сначала растворить его в воде, а затем добавить нитрат меди. Нитрат бария добавляют для того, чтобы избежать восстановления катализатора водородом (в последнем случае катализатор приобретает красную окраску), так как восстановленный катализатор теряет свою каталитическую способность. Катализатор нечувствителен к действию воздуха к влаги если количество воды велико, он переходит в коллоидное состояние. [c.531]

    В литературе дается много решений, касающихся определения вертикального давления засыпки на трубы, уложенные в траншее. При этом, однако, во многих случаях не учитываются отдельные факторы, играющие второстепенную роль при расчете трубопроводов на прочность и устойчивость, но имеющие большое значение при расчете защитной способности покрытия. Прежде всего — это влажность грунта. Грунтовая влага, проникая в покрытие, способствует не только изменению его свойств, но и тому, что вес ее, суммируясь с весом грунтовых частиц, увеличивает вертикальную нагрузку. Ежегодные колебания влажности коллоидно-дисперс- [c.6]

    По внешнему виду стеарокс-6 представляет собой сиропообразную или пастообразную массу желтоватого или светло-коричневого цвета, хорошо растворимую в воде. 1%-ный водный коллоидный раствор не должен расслаиваться при комнатной температуре в течение 24 ч, pH такого раствора 7—9. Содержание влаги в продукте не должно превышать 1 %. [c.231]

    Физико-химические и биологические свойства почвы тесно связаны со спецификой климатических условий, и она оказывает определенное воздействие на коррозионную активность околоземного слоя атмосферы. В зависимости от состава и внешней среды она может ускорить или затормозить процесс атмосферной коррозии металла. Влага и повышенная температура ускоряют физико-химические и биологические процессы в почве. Количество влаги в ней зависит не только от характера частиц почвы и количества атмосферных осадков, но и от ее способности удерживать почвенную влагу. Чем больше коллоидных частиц в почве, тем выше ее адсорбционная способность. [c.20]


    При хранении кристаллы эргокальциферола постепенно разрушаются под влиянием кислорода воздуха, влаги и света под вакуумом в ампулах из оранжевого стекла на холоду в течение 9 месяцев не было заметно признаков разложения [15]. Масляные эмульсии и водно-коллоидные растворы эргокальциферола нестойки [16]. В нейтральной и щелочной среде витамин О2 стоек к нагреванию в кислой среде разрушается [17] при омылении жиров не разрушается.-Перекись водорода, сернистый ангидрид, формальдегид разрушают витамин О2 [18]. Сложные эфиры эргокальциферола не обладают антирахитической активностью. [c.298]

    Физ.-хим. связь объединяет адсорбционную и осмотическую влагу (напр., в коллоидных и полимерных материалах). Адсорбционно связанная влага прочно удерживается силами межмол. взаимод. на пов-сти пор материала в виде монослоя или неск. слоев (см. Адсорбция). Осмотически связанная влага находится внутри и между клеток материала и менее прочно удерживается осмотич. силами (см. Осмос). Влага эти видов связи с трудом удаляется при С. [c.481]

    Влага, взаимодействуя с частицами коллоидно - дисперсного (связного) Фунта, способствует их набуханию, что приводит к уменьшению пористости без сколько - нибудь значительного увеличения единицы объема. Если максимальная влажность фунта меньше максимальной влагоемкости, то имеет место следующая закономерность с увеличением влажности повышается объемная масса для определенной глубины засыпки, что количественно выражается зависимостью показывающей изменение объемной массы фунта от времени на определенной глубине  [c.79]

    Применение коагулянтов позволяет очищать сточные воды от коллоидных и высокомолекулярных вредных прим,есей. Однако при этом образуется хлопьевидный осадок, компонентами которого являются продукты гидролиза химических реагентов в сочетании с загрязняющими примесями. Это осадок содержит значительное количество влаги, находящейся как в различных связанных формах с компонентами осадка, так и в свободном состоянии. Захоронение этого объемистого обводненного шлама оказывается все более сложным, так как потребление коагулянтов для очистки промышленных сточных вод быстро возрастает и условия аккумуляции шламов противоречат требованиям охраны окружающей среды. Поэтому в технологии водоочистки все более актуальной становится задача регенерации и утилизации осадка. [c.28]

    Усушка и набухание древесины При высушивании сырой древесины вначале из нее удаляется свободная влага, содержащаяся в клеточных и межклеточных полостях, при этом размеры высушиваемого куска древесины не изменяются Затем выделяется связанная, или коллоидная, влага, находя щаяся в связанном состоянии в стенках клеток В этот момент начинается усадка древесины, т е уменьшение ее размеров Точка перехода, наступающая при абсолютной влажности (для разных пород) 25—30 %, называется точкой насы щения волокна При увлажнении абсолютно сухая древесина увеличивается в размерах до точки насыщения волокна Такое увеличение вдоль волокон обычно равно менее 0,5%, в радиальном направлении 2—6%, а в тангенциальном 5— 12 % По объему набухание составляет 10—20 % от объема абсолютно сухой древесины При дальнейшем увлажнении дре весины ее размеры не изменяются Неравномерность набухания (следовательно, и усушки) древесины в различных на правлениях приводит часто к ее деформации (короблению) Однако набухание может иметь и положительное значение, например при замачивании деревянных баков и бочек для пре дупреждения течи [c.11]

    Коллоидная влага это та часть влаги, которая адсорбирована органической массой топлива и образует с ней коллоидное соединение. Эта влага удаляется при нафеве топлива до температуры 102-105 °С. [c.123]

    Применение синтетических латексов связано, как правило, с их астабилизацией и, в конечном счете, с разрушением коллоидной системы. Астабилизация латекса может достигаться различными техническими приемами введением электролитов, испарением воды, термическими, электрическими воздействями. Иногда латекс при переработке подвергают комбинированным астабили-зующим воздействиям. Принципиальная особенность процессов астабилизации при переработке товарных латексов заключается в создании контролируемых условий, при которых разрушение коллоидной системы происходит в течение более или менее длительного промежутка времени, обеспечивающего образование равномерной структуры по всему объему (пленки, формованные изделия) или в локализованных участках (например, в некоторых, высоконаполненных латексных композициях). В основе большинства процессов переработки латексов лежит пленкообразование как простым испарением влаги, так и через предварительную [c.607]

    Чувствительность торфа к термическому воздействию наглядно проявляется при изучении энергии связи влаги с термообработанным торфом [217]. При этом наиболее значительные изменения в содержании связанной воды имеют место при <р>0,75 (рис. 4.1), т. е. в области полимолекулярной сорбции. Согласно [217], при термообработке торфа (7 = 523К) в материале высвобождается примерно 56% всей связанной воды, что обусловлено изменением его коллоидной части. Помимо этого, при термообработке торфа во влажном состоянии вследствие процессов гидролиза и ионного обмена кислотность дисперсионной среды растет. Это, в свою очередь, ведет к снижению вклада ион-дипольных взаимодействий в процесс связывания воды торфом, т. е. к уменьшению содержания связанной воды в материале (табл. 4.1). [c.67]

    Почва и грунт представляют собой капиллярнопористые, часто коллоидные системы, поры которых заполнены воздухом и влагой, прнчем вода с частицами почвы и грунта может быть связана физико-механически (в порах или в виде поверхностных пленок на стенках пор), физико-химически (в коллоидных образованиях и в адсорбированных пленках) и химически (в виде гидратированных химических соединений). Их можно рассматривать как твердые микропористые электролиты с очень большой микро- и макронеоднородностью строения и свойств и почти полным отсутствием механического перемешивания и конвекции их твердой основы. [c.384]

    В качестве простейшего примера возникновения коллоидных систем в результате конденсации пара можно назвать камеру Вильсона, широко используемую в ядерной физике, или образование атмосферного тумана, представляющего собой мельчайшие капельки воды, образовавшиеся путем конденсации влаги воздуха в результате его охлаждения. Другим примером является образование аэрозолей металлов и их окислов в дымах металлургических печей. Это нежелательный побочный процесс, который часто происходит ири испарении металлов, когда легкоплавкий металл, например свинец, исп аряется при высоких температурах, свойственных металлургическим процессам, окисляется кислородом воздуха, образуя окислы, обладающие ничтожно малой летучестью, и выделяется из воздуха в виде золя окиси. Осаждение подобных аэрозолей является важной технической проблемой, так как унос их в атмосферу не только приводит к значительным потерям, но и отравляет воздух. [c.530]

    Использованию адсорбентов иногда предшествует их активация. Термическая активация заключается в нагревании адсорбента до 300—400 °С, химическая активаг ция состоит в обработке адсорбента 20%-ной серной кислотой, газообразным аммиаком или 20%-ным водным раствором кальцинированной соды. При термической обработке происходит главным образом удаление влаги из пор адсорбента. Кислотной обработке подвергают в основном отбеливающие глины повышение их активности достигается за счет увеличения поперечного сечения пор при удалении солей и в результате частичного перехода кристаллической модификации кремневой кислоты, входящей в состав глины, в коллоидное состояние. Активация газообразным аммиаком и кальцинированной содой заключается в насыщении ими адсорбента это повышает его нейтрализующую способность по отношению к содержащимся в масле продуктам кислотного характера. [c.124]

    Характер кривой равновесия зависит от способа связи влаги с твердой средой. Таких способов много вода может содержаться в капилля- Рис. У1П-44. Кривые равновесия для гигро-рах, в растворе обычном скопичного (/) и неригроскопичиого (2) ма-или коллоидном, в кри- териалов. [c.639]

    Одним из важных условий мицелло- и структурообразования дисперсной фазы смазок является температура. Коллоидно-химические процессы в производстве смазок протекают при непрерывно изменяющейся температуре и полностью не заканчиваются даже по заверше 1ии их приготовления, т. е. при охлаждении до 30—40 С. Поэтому необходимо осуществлять дозревание смазок, которое происходит в течение I—2 дней при покое и комнатной температуре. Однако для многих смазок равновесное состояние не достигается, о чем свидетельствует изменение их свойств во времени— самопроизвольное отделение дисперсионной среды, резкое упрочнение или разжижение под воздействием те1 перату-ры, механических нагрузок, атмосферной влаги и кислорода. [c.358]

    При поглощении жидкости коллоидными телами выделяется некоторое количество теплоты (теплота набухания). При этом происходит уменьшение общего объема системы твердое телоЧ-вода (контракция). При сушке нагретым воздухом нельзя удалить всю влагу, а только часть ее. Поэтому вводится понятие удаляемого влагосодержания Ц7у. Оно равно разности общего влагосодержания W и равновесного влагосодержания W p, т. е. [c.184]

    Коллоидные частицы гуматов металлов способны к гетерокоагуляции (см. с. 301) -с алюмосилжатами- и кремнеземом прм этом 1обр1а1зуются высокопористые, высокодисперсные структуры с емкостью обмена, достигающей 0,6—0,8 г-экв/кг. Эти структуры содержат значительные количества ценных катионов и богаты другими питательными веществами, а также способны удерживать влагу за счет капиллярных сил вместе с тем они достаточно хорошо проницаемы и для воздуха, что обеспечивает жизнедеятельность различных микроорганизмов, улучшающих структуру и плодородие почв. [c.213]

    При умеренном количестве осадков и достаточном количестве тепла образуется чернозем, которым особенно богата наша страна. Значительное количество органических остатков, содержащихся в черноземе, связано в гуматы двухвалентных металлов (соли гуминовых шслот и кальция или магния), слабо растворимые в воде. Коллоидные частицы гуматов металлов способны к гетерокоагуляции с алюмосиликата ш и кремнеземом (см. гл. X, 5) при этом образуются высокопористые, высокодисперсные структуры с емкостью обмена, достигающей 0,6—0,8 моль/кг. Эти структуры содержат значительные количества ценных катионов и богаты другими питательными веществами, а также способны удерживать влагу за счет капиллярных сил вместе с тем они достаточно хорошо проницаемы и, 1дя воздуха, что обеспечивает жизнедеятельность различных м1акроорганизмов, улучшающих структуру и плодородие почв. [c.255]

    Основная причина почвенной коррозии — наличие воды. Даже при минимальной влажности почва становится ионным проводником электрического тока, т.е. представляет собой электролит. К почвенной коррозии применимы основные закономерности электрохимической коррозии, справедливые для жидких электролитов. Однако электрохимический характер почвенной коррозии имеет особенности, отличающие ее от коррозии при погружении металла в электролит или от коррозии под пленкой влаги. Это связано с тем, что почва имеет сложное строение и представляет собой гетерогенную капиллярно-пористую систему. Почвы обладают водопроницаемостью и капиллярным водоперемещением, они накапливают и удерживают тепло и вместе с тем снижают испаряемость влаги. Если вода находится в порах или в виде поверхностных пленок на стенках пор, то ее связь с почвой имеет физико-механический характер. При этом влага удерживается в почве в неопределенных соотношениях. Другой вид связи — физико-химическая, при которой возникают коллоидные образования почвы. Возможна также химическая связь, которая характеризуется строго определенным молекулярным соотношением компонентов, например при образовании гидратированных химических соединений. [c.41]

    Влага, взаимодействуя с частицами коллоидно-дисперсного (связного) грунта, способствует их набуханию, ЧТО приводит к уменьшению пористости без сколько-ни--будь значительного увеличения единицы объема. Так как максимальная влажность грунта на данном участке меньше максимальной влагоемкости, которая по нашим данным составляет 33%, то в пределах указанного изменения влажности имеет место закономерность с уве--личением влал ности повышается объемная масса для определенной глубины засыпки, что количественно выражается зависимостью (7). [c.54]

    Для получения более высококачественных антифрикционных материалов были изучены физико-механические свойства, термическая и химическая стойкость фторопластовых композиций с различными наполнителями, а также разработана технология их получения и переработки в изделия. В качестве исходного материала был выбран фторопласт-4 (марки Б) в качестве наполнителей были применены МоЗг ВМ (99% ВК 0,1% В2О3, 0,8% Собц() Ва304 (чистый) коллоидный графит марки С-1 (содержание золы — 1,17%, содержание влаги 0,2%, абразивные свойства отсутствуют, остаток после просева на сите с сеткой [c.40]

    Леонардит относится к лигнитным материалам, используемым в буровых растворах. Его особенностью является более высокое, чем в лигните, содержание кислорода и влаги. В месторождениях лигнита выявлены три сорта леонардита 1) смесь лигнита и леонардита, содержащая около 45 % гуминовых кислот и залегающая у разрушающейся кровли пласта 2) черный коллоидный набухающий в воде материал, содержащий около 80 % гуминовой кислоты и по минералогической системе Дана определяемый как природная гумусовая кислота 3) мелкозернистые вторично осажденные гуматы кальция , смешанные с гипсом и содержащие около 10 % гуминовых кислот. Массовая доля влаги в леонардите на месте залегания изменяется от 30 до 60 %. Растворимость в щелочах можно использовать как показатель содержания гуминовой кислоты. [c.484]

    Смазки или мази, являясь пластичными смазочными материалами, имемт полутвердую конспстендию и представляют собой коллоидные системы, состоящие в основлом из минерального масла и загустителя. Наиболее широко применяются консистентные смазки, в состав которых в качестве загустителя входят натровые и кальциевые мыла — соли естествен/ных и синтетических жирных кислот, а также церезины, парафины и др. Смазки, изготовленные на натровых мылах, имеют более высокую температуру плавления, чем смазки, в состав которых входят кальциевые мыла. Натровые смазки чувствительны к влаге, поэтому при повыше ,ной влажности среды применение их допустимо лить при условии частой смены смазки. Кальциевые смазки являются влагостойкими. [c.42]

    СУШКА, удаление жидкости (чаще всего влаги-воды, реже иных жидкостей, напр, летучих орг. р-рителей) из в-в и материалов тепловыми способами. Осуществляется путем испарения жидкости и отвода образовавшихся паров при подводе к высушиваемому материалу теплоты, чаще всего с помощью т. наз. сушильных агентов (нагретый воздух, топочные газы и их смеси с воздухом, инертные газы, перегретый пар). С. подвергают влажные тела твердые-коллоидные, зернистые, порошкообразные, кусковые, гранулированные, листовые, тканые и др. (эта группа высушиваемых материалов наиб, распространена) пастообразные жидкие-суспензии, эмульсии, р-ры о С. газов и газовых смесей см. Газов осушка. [c.481]

    Казанский М. Ф. и Луцик П. П., Влияние форм связи поглощенной влаги а кинетику гидротермического поля в лоликапил-лярно- пористо1М КОЛЛОИДНОМ теле нри сушке, Инж.-физич. журнал, т. 3, №. Ы, 11960. [c.675]

    Растворяют 140 г вольфрамовокислого натрия в 700 мл дистиллированной поды (см. примечание 1), Полученный раствор отфильтровывают, если необходимо, и пропускают через колонку, содержащую 300 г катионита КУ-2 в Н- фор-ме (в расчете на сухой ионит), со скоростью 25—30 мл мин. Вытекающий -из колонки раствор представляет собой золь, содержащий 130—140 з/л вольфрамовой кислоты. После пропускания раствора колонку промывают 500 мл воды (со скоростью 40—50 мл/мин), что пра ктически обеспечивает вытеснение всей оставшейся в колонке кислоты. Фильтраты соединяют, получая около 1 л коллоидного раствора ( - iIOO г/л H2WO4), и нагревают до 80—100°. При этом образуется гель вольфрамовой кислоты коагуляция практически заканчивается зя 15 минут. Суспеизию охлаждают до 40—60° и фильтруют через стеклянный фильтр № 3 (ом. примечание. 2). Осадок, содержащий 40—50% влаги, высушивают при 100—110° (см. примечание 3) в течение 2 часов, а затем растирают в ступке. [c.20]

    Растворяют 115 г молибдеиовокислого аммония [ МН4)бМо7024 НгО] в 500 мл воды ( 160 г/л МоОз) и пропускают раствор через колонку, содержащую 250 г катионита КУ-2 в Н-форме (в расчете на сухой ионит), со скоростью 20 мл/мин. Вытекающий. из колонки раствор содержит чистую молибденовую кислоту. Затем колонку промывают 400 мл воды со скоростью 30—40 мл1мин, что практически обеспечивает вытеснение всей оставшейся в колонке кислоты. Фйльтраты соединяют, получая 0,8 л коллоидного раствора с концентрацией молибденовой кислоты 120—130 г/л. Раствор выпаривают до объема 200—250 мл, причем молибденовая кислота выделяется в виде густой массы. Влажную массу (содержащую 60% влаги) охлаждают до 30—40°, переносят в стеклянный фильтр № 2, отделяют маточник и промывают 100 мл воды (см. примечание 2). Кислоту высушивают 3 часа при 90—100° (см. примечание 3). [c.68]

    Для многих промышленных процессов (окисление, горение и др.) воздух считается гомогенной средой, а для процесса окисления аммиака на платиновом катализаторе тот же воздух из-за наличия в нем пылинок, капелек влаги и т. п. является гетерогенной средой. Исходное сырье, используемое в промышленности, всегда имеет примеси. При этом природные примеси часто влияют на ход процесса как катализаторы и ингибиторы. Поэтому лишь условно можно принять за гомогенные те производственные процессы, которые протекают в газовой или жидкой фазе. Граница между гомогенными и гетерогенными системами проходит по коллоидам и тонким аэрозолям, которые называются микрогетероген-ными системами. И хотя нельзя найти резкого разграничения между гетерогенными взвесями и коллоидными растворами, с одной стороны, и между коллоидными и истинными растворами— с другой, все же условно это разделение можно провести по величине частиц дисперсной фазы. Так, грубодисперсные системы (суспензии, эмульсии), которые можно отнести к гетерогенным, имеют [c.133]


Смотреть страницы где упоминается термин Коллоидная влага: [c.323]    [c.592]    [c.10]    [c.319]    [c.297]    [c.75]   
Топочные процессы (1951) -- [ c.39 , c.40 ]




ПОИСК







© 2025 chem21.info Реклама на сайте