Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа 14. Коллоидный сад

    Предполагается, что в этих, относительно устойчивых системах частицы собраны в плотные, небольшие агрегаты, разделенные прослойками воды, в которой они перемещаются сравнительно свободно. С ростом т агрегаты разрушаются и частицы образуют прочную пространственную сплошную сетку, хотя и менее плотную, чем начальная структура, но ограничивающую движение частиц увеличение объема приводит к всасыванию влаги в дилатантную область извне. Наглядным примером этого явления может служить высыхание берегового песка вокруг свежего следа ноги. Явление дилатансии весьма нежелательно во многих технологических процессах, поскольку требует повышения расхода энергии на перемешивание, нарушает работу коллоидных мельниц и др., борьба с ним возможна посредством повышения устойчивости системы. Дилатансия свойственна также некоторым растворам полимеров. [c.268]


    Наши работы по реологии были начаты с исследований адсорбционных слоев в растворах, монослоев нерастворимых ПАВ и сопоставления этих свойств с реологическими свойствами объемных систем. Это привело к ряду выводов, имеющих общее значение для реологии. Эти выводы представлены в работах [4—9]. До этих работ коллоидные системы было принято делить на жидкие и твердые по признаку отсутствия или наличия предела текучести (по Шведову — Бингаму). Ранее считалось, что ниже предела текучести течение принципиально невозможно, а выше этого предела оно идет с постоянной вязкостью. В одних работах эту вязкость называли пластической [9а], в других — истинно релаксационной [10]. [c.203]

    Как работают коллоидные мельницы  [c.74]

    Коллоидные мельницы. Их широко применяют для обработки ингредиентов, предназначенных для латексных смесей. Принцип работы коллоидных мельниц (рис. 64) основан на интенсивном скользящем трении, возникающем между отдельными частицами обрабатываемого вещества при прохождении его через узкий зазор [c.176]

    Наиболее волокнистую структуру имеют смазки на основе натриевых мыл. Когда волокна разрываются за счет напряжений двига, смазка теряет консистентность, которую можно восстановить (если при работе не теряется такой основной компонент, как вода), вновь растворяя мыло и охлаждая его с тем, чтобы вызвать рост новых кристаллов. Длина волокон — от 0,2 до 50 мк, соотношение между длиной и диаметром колеблется в пределах от 10 1 до 200 1 [82]. Размеры частиц некоторых загустителей коллоидных консистентных смазок можно сравнить с размерами бацилл и вирусов. [c.504]

    В этой лабораторной работе вы рассмотрите четыре различные жидкости, содержащие воду, и отнесете каждую из них к суспензиям, коллоидам, растворам или их сочетаниям. Вы отфильтруете каждый образец и попробуете обнаружить эффект Тиндаля в исходном и отфильтрованном образце. Частицы в суспензии могут быть отделены при помощи фильтрации, в то время как частицы в коллоиде или растворе слишком малы для того, чтобы задерживаться фильтровальной бумагой. Проявление эффекта Тиндаля указывает на наличие коллоидных частиц. [c.37]

    Флуоресценция почти полностью уничтожается действием на нефть азотной кислоты, галоидов или просто солнечных лучей. Предполагали, что флуоресценция нефтей зависит от взвешенных коллоидных частей — субмикронов. Однако сильный электрический ток 30 тыс. б, пропущенный через флуоресцирующий нефтепродукт, нисколько не уменьшил этого свойства. Зато из кислых гудронов были выделены вещества типа многокольчатых ароматических соединений — хризен и флуорен, которые, по-видимому, являются носителями флуоресценции, так как выделение их из нефтепродуктов уничтожает флуоресценцию, и, наоборот, при прибавлении их к растворителям получаются сильно флуоресцирующие растворы. Флуоресцирующие вещества образуются вновь при перегонке. Установлено также, что при перегонке с некоторым разложением получаются дистилляты с большей флуоресценцией, чем при работах с большим вакуумом .  [c.51]


    Эффективность депрессорных присадок при кристаллизации твердых углеводородов связывают с их полярностью, снижением сольватации молекул парафина молекулами масла, нарушением агрегативной устойчивости дисперсии парафина и повышением при этом компактности кристаллических агрегатов, образованием ассоциированных комплексов молекул присадки и твердых углеводородов, что приводит к увеличению скорости фильтрования в процессе депарафинизации масляного сырья. Изучение влияния депрессорных присадок на поведение суспензий твердых углеводородов в сопоставлении с электрокинетическими исследованиями позволяет сделать вывод о возможной электростатической природе их действия. В работе [104], проведенной в этом направлении, в качестве критерия эффективности маслорастворимых присадок, используемых для интенсификации процесса депарафинизации, предложено значение энергетического барьера, создаваемого присадками на поверхности частиц дисперсной фазы в их суспензиях. Энергетический барьер учитывает кроме электрокинетического потенциала частиц дисперсной фазы и их размеры. В работе показана возможность применения маслорастворимых присадок для создания электрического заряда у частиц твердых углеводородов, обеспечивающего образование устойчивых коллоидных систем. Электрокинетические исследования реальных систем твердых углеводородов показали, что присадки, обладающие только депрессор-ным действием, эффективны в дистиллятном сырье. Для остаточного сырья следует использовать металлсодержащие многофункциональные присадки. Однако многокомпонентность масляных рафинатов, сложность состава твердых углеводородов и присутствие двух ПАВ при осуществлении процесса депарафинизации нефтяного сырья в присутствии присадок сильно усложняют изучение механизма кристаллизации твердых углеводородов, что, в свою очередь, затрудняет направленный поиск наиболее эффективных присадок для интенсификации этого процесса. [c.171]

    По-видимому, наиболее полезной публикацией в этой области является [10] она содержит, в частности, систему единиц СИ, а также приложение по развитию работ данной области. Опубликованы и другие материалы, касающиеся коллоидной и поверхностной химии [И, 12], электрохимии [13]. Официальные рекомендации в других областях охвачены публикациями [c.203]

    Фильтрование. В процессах фильтрования и пропитки твердых тел происходит движение жидкой фазы относительно пор и каналов в твердой фазе. Интенсификация этих процессов может быть достигнута при увеличении скорости относительного движения жидкости. Не случайно поэтому многочисленные работы были посвящены исследованиям влияния вибраций, ультразвука и ударных волн на течение жидкостей в капиллярах. В коллоидных системах существенное влияние на процесс начинают приобретать электрические явления, и поэтому для интенсификации технологических процессов, например в мембранных аппаратах для ультрафильтрации, используют электрические поля. [c.126]

    Технологическое обеспечение данного способа требует серьезной научной проработки, так как, несмотря на достаточно большую библиографию по коллоидным свойствам нефти и продуктов ее переработки, экспериментальные и теоретические работы разных школ и направлений не систематизированы и не обобщены теорией, позволяющей априорно получить нужный результат в сложнейшей коллоидной системе из продуктов первичной и вторичной переработки нефти [3, И, 13-20]. [c.5]

    Принцип работы описываемой установки состоит в следующем. Оптическое изображение объекта исследования преобразуется в телекамере в видеосигнал, который далее в анализаторе изображения трансформируется в вариационный ряд стереометрических параметров. Микропроцессор производит статистическую обработку последних, определяет размеры неоднородностей - в данном случае коллоидных частиц, строит гистограмму их распределения по размерам, определяет характер этого распределения и его параметры. [c.34]

    По концентрации дисперсной фазы все эмульсии делят на разбавленные, концентрированные и высококонцентрированные. Под разбавленными понимают высокодисперсные эмульсии, содержащие до 0,1% дисперсной фазы по размеру частиц они близки к коллоидным растворам, т. е. диаметр глобул в таких эмульсиях около 10 см. Разбавленные эмульсии агрегативно устойчивы даже без введения эмульгаторов, по своим свойствам они больше похожи на лиофобные золи. Классическим примером разбавленной эмульсии может быть эмульсия машинного масла в воде, образующаяся при конденсации пара в процессе работы паровой машины. [c.21]

    Впервые уравнения подобного типа для описания поведения во времени коагулирующей дисперсной системы были рассмотрены Смолуховским. Он моделировал дисперсную систему, состоящую из сферических коллоидных частиц. Под действием броуновской диффузии эти частицы могут сталкиваться и слипаться (коагулировать), что приводит к изменению во времени их размеров и числа. Смолуховский рассмотрел дискретный аналог уравнения (5.8). Впоследствии этим уравнением занимались многие исследователи. Достаточно полные обзоры по общим и частым методам его решения можно найти в работе [102]. [c.82]


    Фталоцианиновые смазки длительно сохраняют структуру при тяжелых условиях работы, водостойки и имеют хорошую коллоидную стабильность однако при повышенных температурах они склонны к затвердеванию [6]. [c.693]

    В прошлом учебном году нами была использована рейтинговая система оценки знаний студентов в курсе коллоидной химии (поверхностные явления и дисперсные системы) на трех потоках ТБ-94, ТП-94 и ТС-94. В течение семестра студенты написали контрольные работы по пяти темам  [c.58]

    Кроме контрольных работ студентам было дано одно расчетное задание по адсорбции на пористых телах. При его выполнении студенты научились графическому дифференцированию интегральных кривых распределения, что необходимо в лабораторном практикуме целого ряда дисциплин (физическая, коллоидная, аналитическая химии и др.). [c.58]

    Разнообразная формовка позволяет получать частицы любой формы и размеров, регулировать поверхность и пористость катализатора, изменять механическую его прочность. Износоустойчивые контакты, используемые для работы в кипящем слое, лучше формовать методом коагуляции, дающим сферические высокопрочные гранулы. Однако область применения этого метода ограничивается относительно малоподвижными гелями коллоидных веществ. Для осажденных катализаторов наиболее характерна технология крупнотоннажного производства гранулированного алюмосиликатного катализатора крекинга нефтепродуктов. [c.105]

    Проазводственгые данные о работе коллоидной мельницы Шарлотта [c.72]

    Дисперсанты (dispersants). Дисперсанты подавляют агломерацию и слипание продуктов окисления, образование шлама или осаждение смолистых отложений на поверхности деталей. В качестве дисперсантов обычно применяются полимеры с полярными группами и сукцинимиды. Дисперсанты поддерживают коллоидные частицы продуктов окисления и зафязнений во взвешенном состоянии (рис. I.IO). В основном они обеспечивают чистоту непрогретого двигателя. При эффективной работе дисперсантов моторное масло темнеет, а диспергированные мелкие продукты окисления не забивают фильтр и не осаждаются на горячих деталях двигателя. [c.33]

    Назначение стержнеобразной структуры молекулы с точки зрения вязкости определили в своих работах Льюис и Сквайр [29], которые основывались на теоретическихноложенияхШтаундингера [30]. Присадка должна обладать некоторой оптимальной растворимостью в той среде, к которой она добавляется [31], а при повышении температуры должна легко переходить из коллоидно-дисперсного состояния в растворенное, или, иными словами, каждая молекула должна изменять спиралеобразную форму на разбухшую последняя форма как раз и оказывает наибольшее влияние на вязкость. [c.496]

    Облает1> науки, изучающая физическую химию процессов деформирования, разрушения и образования ма1срналон и дисперсных структур называется физико-химической мех а II и к ой твердых тел и д и с п е р с п ы х структур. Она сформировалась в середине нашего века благодаря работам П. А. Ребиндера и его школы как новая область научного знания, пограничная коллоидной химии, молекулярной физике твердого тела, механике материалов и [c.340]

    Таким образом, из-за проскоков взвешенных частиц в рабочий раствор, самокоагуляции раствора жидкого стекла и невозможности быстро освободиться от этих примесей обычными фильтрующими материалами (мешковина, бельтинг) получающиеся шарики гидрогеля сильно растрескиваются при сушке. Например, при работе в нормальных условиях на содовой силикат-глыбе растрескивание шариков гидрогеля обычно не превышает 12—14%, при работе с мутным сульфатным жидким стеклом в зависимости от степени его коллоидности и концентрации взвешенных частиц выход растрескивающихся шариков после сушки гидрогеля достигает 30—40%. [c.28]

    В Институте коллоидной химии и химии воды АН УССР разработан прибор с автоматической записью кинетики набухания при различных внешних нагрузках на образец и реализована методика изучения набухания дисперсных материалов, не осложненного явлениями усадки [122, 123]. С помощью новых прибора и методики в работе [124] было изучено набухание структурно совершенного каолинита Глуховецкого месторождения (УССР), частицы которого ориентированы базальными (001) гранями преимущественно параллельно друг другу. [c.41]

    В заключение отметим, что формирование слоев связанной воды вблизи поверхности силикатных частиц коллоидных размеров тесно связано с формированием коагуляционной сетки в дисперсии. Из работ [132—134] следует, что формирование гиксотропной структуры в дисперсиях монтмориллонита приводит к заметному увеличению так называемого всасывающего давления я — величины, которая измеряется с помощью тен-зиометров и характеризует способность почвы при соприкосновении с чистой водой впитывать ее в себя. По величине я легко определить изменение химического потенциала связанной воды граничного слоя по сравнению с объемной, а по зависимостям я от температуры — парциальные молярные энтальпии и энтропии связанной воды. Перемешивание дисперсий (разрушение тиксотропной структуры) приводило к резкому уменьшению значений я. Получаемые на их основе парциальные термодинамические функции связанной воды практически не отличались от таковых для объемной воды. Тиксотропное структу-рообразование, наоборот, вызывало повышение значений я, а термодинамические характеристики связанной в структурированной дисперсии воды были существенно иными, чем в объемной воде [133]. [c.44]

    Вальтер Гайтлер родился в 1904 г. в Карлсруэ, учился в университетах Карлсруэ, Берлина и Мюнхена. В Мюнхене он получает степень доктора философии (1926 г.) за работу по теории растворов, в>1-полненн-ую под руководством К. Ф. Герцфельда и А. Зоммерфельда. Непосредственным научным руководителем был Герцфельд— эрудированный и разносторонний исследователь, в творчестве которого физико-химическая проблематика занимала ведущее место. В 1920-х гг. в центре внимания Герцфельда были вопросы химической термодинамики, кинетической теории газов, спектроскопии, молекулярной рефракции и коллоидной химии. [c.154]

    В работе [14] предлагается более эффективное использование сероводорода, в котором получение коллоидной серы с количественным выходом достигается окислением сероводородсодержащего углеводородного газа кислородом воздуха в присутствии алюмомагний-ванадийхромового катализатора (табл. 4.11). [c.129]

    В коллоидных системах и капиллярно-пористых телах в электрических полях наблюдаются такие процессы, как электрофорез, электроосмос, электродиализ, электрокоагуляция, ионофорез и др. [И]. Указанные процессы относятся к группе так называемых электроповерхност-ных, т.е. относящихся к коллоидной и физической химии (двойной слой, электрокинетические явления, электроповерхностные силы). В последние годы эти вопросы были существенно развиты в работах Б.В. Дерягина, Н.В. Чураева, С.С. Духина и других исследователей [11,12]. [c.79]

    Образование поверхности требует затраты работы, и поэтому получение врИ1еств с сильно развитой поверхностью осуществляют большей частью из сильно пересыще1гного состояния (см. 143 — пересыщенных раствора или пара, переохлажденной жидкости или в результате применения большой плотности тока при электролизе н т. д. — т. е. в условиях, далеких от равновесия. Это играет большую роль при получении коллоидных систем. Кроме гого, этот фактор имеет большое значение для получения активных катализаторов. Для сохранения веществ в состояниях с сильно развитой поверхностью нередко приходится прибегать к искусственной стабилизации. [c.359]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]

    Растворы полимеров раньше рассматривали как коллоидные растворы (лиофильные золи). Однако в работах Флори, Добри, В. А. Каргина и др. было показано, что эти растворы, в особенности при невысоких концентрациях полимера, должны рассматриваться как обычные растворы, отличающиеся от последних внутренним строением, термодинамическими и другими свой-. ствами, что обусловлено лишь большой величиной и особенностями строения макромолекул полимеров и сильным различием в величине частиц полимера и растворителя. Наиболее отчетливо это проявляется для очень разбавленных растворов. Для этих растворов применимы обычные соотношения, характеризующие зависимость осмотического давления растворов и других свойств от их концентрации, однако все же следует учитывать очень большую величину макромолекул полимера и гибкость цепей. Подвижность отдельных звеньев цепей приводит к тому, что макромолекула может обладать очень большим числом конформаций. Вследствие этого соответственно увеличивается термодинамическая вероятность и, следовательно, энтропия системы. [c.601]

    В зависимости от условий защелачивания и соотношения реагентов сульфонаты могут содержать значительное количество оксидов, гидроксидов и карбонатов в тонкодисперсном и коллоидном состоянии. Сульфонаты с избыточной щелочностью (так называемые сверхосновные или многозольные) способны нейтрализовать кислотные соединения, накапливающиеся в масле при работе двигателя. Сульфокислоты для маслорастворимых сульфонатов получают путем сульфирования минеральных масел олеумом или серным ангидридом (газообразным или жидким). [c.67]

    Существуют различные взгляды на механизм образования основных сульфонатов. Одни исследователи [пат. США 2426540 2451346] считают, что основные сульфонаты являются классическими основными солями. Однако это маловероятно, так как предлагаемая этими исследователями структура не согласуется со структурой щелочных сульфонатов, содержащих более чем удвоенное против теоретического количества металла. Согласно другим работам [пат. США 2501731 2485861] основной сульфонат представляет собой коллоидную суспензию гидроксида щелочного металла в маслорастворимом сульфонате. Что же касается сверхосновных сульфонатов [2, с. 210], обладающих не только большой нейтрализующей способностью, но и значительным диспергирующи м действием то эти свойства можно объяснить наличием в них большого количества полярного неорганического основания Ме(ОН)2-МеО-МеСОз. Исходя из этого общую [c.77]

    Кроме таких общих с другими нефтепродуктами характеристик, как вязкость, температуры застывания и вспышки, содержание воды и механических примесей, кор розионность, испаряемость и т. д., смазки обладают рядом специфических свойств, присущих только им эффективная вязкость — величина этого показателя характеризз ет зфовень и постоянство энергетических потерь в узле трения, т. е. устойчивость его работы предел прочности и термоупрочнение определяют способность смазки удерживаться на движущихся деталях, наклонных поверхностях, в негерметизированных узлах трения (предел прочности), а также сохранять свойства в процессе эксплуатации (термоупрочнение) пенетрация характеризует консистенцию (густоту) смазки тем-п атура каплепадения определяет верхний температурный предел работоспособности смазки, а склонность к сползанию — способность предотвращать разрывы пленки на вертикально закрепленных поверхностях, что особенно важно для консерва-ционных смазок коллоидная и механическая стабильность характеризуют постоянство состава и свойств смазки при хранении и эксплуатации. [c.468]

    Эмульсии относятся к микрогетерогенным системам, частицы которых видны в обычный оптический микроскоп, а коллоидные растворы принадлежат к ультрамикрогетерогенным системам, их частицы не видны в обычный микроскоп. Хотя по своей природе эти системы близки, но физико-химические их свойства различны и зависят в значительной степени от дисперсности. При образовании эмульсии образуется огромная поверхность дисперсной фазы. Так, количество глобул воды в одном литре 1%-ной высокодисперсной эмульсии исчисляется триллионами, а общая межфазная площадь поверхности — десятками квадратных метров. На такой огромной межфазной поверхности может адсорбироваться большое количество веществ, стабилизирующих эмульсию. В процессе образования эмульсии на хщспергирование жидкости затрачивается определенная работа и на поверхности раздела фаз концентрируется свободная поверхностная энергия — избыток энергии, содержащейся в поверхностном слое (на границе двух соприкасающихся фаз). Энергия, затраченная на образование единицы межфазной поверхности, называется межфазным поверхностным натяжением. Удельная поверхностная энергия измеряется работой изотермического и обратимого процесса образования единицы поверхности поверхностного слоя и обозначается а. [c.15]

    Смазка ЦИАТИМ-201 была первой литиевой смазкой, поставленной на производство. Она нашла применение в самых разнообразных областях техники благодаря своей водоупорности, высокой химической стабильности и широкому диапазону температур, в котором она обеспечивает работу механизмов. При применении этой смазки следует учитывать ее недостатки низкую коллоидную стабильность (выделяет масло), сравнительно низкие антифрикционные свойства (пе может применяться в тяжелонагруженных узлах), быструю высыхаемость и плохую сопротивляемость смыванию водой. При храпении в крупной таре (бидонах) из нее выделяется масло поэтому она расфасовывается в банки емкостью около 1 кг. [c.702]

    Все процессы диспергирования осуществляются только при затрате работы и с прекращением этой затраты останавливаются. Д1еханизм процессов диспергирования еще недостаточно изучен. Однако очевидно, что работа, затрачиваемая на дробление, иро-иорциональиа поверхности вновь образуемых частнц и должна сильно возрастать с увеличением задаваемой стеиеии дисперсности. Непосредственное диспергирование до коллоидных частиц требует затраты огромного количества энергии и практически неосуществимо. В лучшем случае оно приводит к образованию грубодисперсных золей. [c.189]


Библиография для Работа 14. Коллоидный сад: [c.184]   
Смотреть страницы где упоминается термин Работа 14. Коллоидный сад: [c.71]    [c.170]    [c.193]    [c.456]    [c.65]    [c.4]    [c.109]    [c.138]   
Смотреть главы в:

Руководство к практическим занятиям по коллоидной химии Издание 3 -> Работа 14. Коллоидный сад




ПОИСК







© 2025 chem21.info Реклама на сайте