Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний структура алмаза

    Структура свободного кремния аналогична алмазу. Графитоподобная модификация неизвестна. Кремний — типичный полупро- [c.136]

    В. Ф. Киселев (1961 г.) получил надежные опытные доказательства и дал теоретическое обоснование строгого подчинения процесса хемосорбции закономерности стехиометрии. Совместно с сотрудниками им было установлено, что величины и теплоты сорбции на графите обусловлены количеством и характером межатомных связей, возникающих между атомами сорбата и атомами поверхности сорбента. Он отмечает, что хемосорбция на атомарно чистой поверхности приводит к насыщению разорванных на поверхности химических связей. Происходит восстановление нормальной гибридизации орбиталей поверхностных атомов благодаря их связи с хемосорбированными атомами. Исследование поверхности полупроводников со структурой алмаза, а именно монокристаллов германия и кремния методом дифракции медленных электронов, показало, что при сорбции на них кислорода, иода, брома, воды и атомов некоторых металлов действительно восстанавливается порядок в расположении атомов на поверхности, что и позволяет восстанавливать нормальную гибридизацию. [c.199]


    У алмаза электроны атомов углерода заполняют валентную зону. Перевод электронов в зону проводимости требует высоких энергий — ширина запрещенной зоны составляет А = 5,7 эВ, поэтому алмаз —диэлектрик (хотя по ряду других свойств его относят к полупроводникам). Кремний имеет структуру алмаза, и у него также заполнена валентная зона, но вследствие энергетической близости зоны проводимости и валентной зоны (Д =1,1 эВ) кремний проявляет свойства полупроводника. У графита валентная зона, содержащая 2р-негибридные электроны, и зона проводимости перекрываются, и эта модификация углерода, не являясь металлом, хорошо проводит электрический ток. [c.183]

    Карбид кремния, или так называемый карборунд, 81С образуется при восстановлении двуокиси кремния углем при температуре около 2000° С. Чистый карбид кремния представляет собой бесцветные кристаллы (технический окрашен обычно примесями в темный цвет). Кристаллическая решетка карбида кремния напоминает кристаллические решетки алмаза и элементарного кремния структуру кристаллов карборунда можно представить, если в расширенной решетке алмаза половину атомов углерода заменить на атомы кремния. Плотность карбида кремния 3,20 г/см . Характерными свойствами его являются чрезвычайно большая твердость (в этом отношении он лишь немногим уступает алмазу) и химическая инертность. На карбид кремния не действуют даже сильнейшие окислители и кислоты. Он разлагается лишь при нагревании выше 2200° С, а также при сплавлении со щелочами в присутствии кислорода. [c.195]

    Кристаллы кремния имеют структуру алмаза, но атомы 5г обладают З -орбиталями, энергетически близкими к Зр-орбиталям. Поэтому зона проводимости у кремния располагается ближе к валентной зоне (рис. 28, б), полностью укомплектованной электронами, как и у алмаза. При этом Л составляет только 1,12 эВ, и валентные электроны при небольшом возбуждении могут переходить в зону проводимости. В результате кристалл кремния способен проводить электрический ток. [c.75]

    Известны аморфный и кристаллический кремний. Кристаллический кремний имеет структуру алмаза, обладает металлическим блеском тугоплавкий, очень твердый, полупроводник. [c.68]

    Полупроводники имеют такую же зонную структуру как изоляторы, и при 7 = 0 К ведут себя точно так же, т. е. не проводят электрический ток. Однако ширина запрещенной зоны у них относительно невелика, и при тепловом возбуждении заметное число электронов попадает из заполненной валентной зоны в пустую до этого (при О К) зону проводимости (см. рис. 7.6, в). При повышении температуры число таких электронов и как следствие электропроводность увеличиваются. Типичными полупроводниками являются упоминавшиеся выше кремний, германий, серое олово, имеющие структуру алмаза, но узкую запрещенную зону. [c.137]


    Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз — одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе 4. Структура алмаза показана на рис. 11.1. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. В неорганической химии известно большое число веществ с атомной кристаллической решеткой. Они имеют высокие температуры плавления (у алмаза свыше 3500°С), прочны и тверды, практически нерастворимы в жидкостях. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием. [c.79]

    Физические свойства. Кристаллический кремний - вещество темносерого цвета со стальным блеском. Структура кремния аналогична структуре алмаза. В его кристалле каждый атом окружен тетраэдриче-ски четырьмя другими и связан с ними ковалентной связью, которая значительно слабое, чем между атомами углерода в алмазе. [c.255]

    Физическая природа ковалентной связи в твердых телах та же, что и в молекулах. Сила притяжения возникает в результате концентрации электронного облака вдоль прямых, соединяющих соседние ядра. Типичными примерами кристаллов с почти чистой ковалентной связью являются кристаллы алмаза, кремния, германия, карбида кремния (Si ). Все они имеют структуру алмаза , показанную на рис. 2 ее следует сравнить со структурой молекулы метана (рис. 17). В решетке типа алмаза ребра элементарной ячейки не совпадают с направлением валентных связей. [c.46]

    Карбид кремния (81С) и нитрид бора (ВЫ) — примеры других твердых тел со структурой алмаза. Формульная единица ВЫ изоэлектронна с формульной единицей СС. Оксид кремния (IV) ЗЮ2, кремнезем, также образует трехмерные структуры. Связи 5 —О создают тетраэдрическое окружение каждого каждый атом кислорода связан с двумя атомами кремния (рис. 6.14). Такая структура встречается в кварце и других кристаллических формах кремнезема. Кварц остается твердым вплоть до 1700 °С. [c.138]

    Изобразите схематически структуру карбида кремния 51С, напоминающую структуру алмаза. Почему карборунд (81С) можно использовать в качестве абразивного материала Почему карбид кремния не существует в виде графитоподобной структуры  [c.141]

    Кремний и германий имеют структуру алмаза. [c.487]

    Структура этого вещества подобна структуре алмаза, причем атомы углерода и кремния в кристалле расположены так, что каждый атом углерода находится в центре тетраэдра, образованного атомами кремния, а каждый атом кремния — в центре тетраэдра, образованного атомами углерода. Ковалентные связи, связывающие все атомы при такой структуре, обусловливают очень высокую твердость карбида кремния. Это вещество применяют в качестве абразива. [c.529]

    Элементарный углерод существует в двух кристаллических формах — в виде алмаза (который уже обсуждался в гл. 10) и графита. Структура алмаза с тетраэдрическими углами между связями, образуемыми гибридизованными 5р -орбиталя-ми, присуща и другим элементам IV группы. Однако можно заранее предвидеть, что по мере увеличения длины связей твердость кристаллов со структурой алмаза должна уменьшаться. В ряду элементов IV группы тетраэдрической структурой алмаза обладают углерод, кремний, германий и серое олово межатомные расстояния увеличиваются в этом ряду от 1,54 А у углерода до 2,80 А у серого олова. По этой причине прочность связей уменьшается от очень большой у алмаза до очень слабой у серого олова. Серое олово представляет собой настолько мягкое вещество, что существует в форме микрокристаллов или просто порошка. Для элементов IV группы с кристаллической структурой типа алмаза характерно наличие диэлектрических свойств (другими словами, они являются изоляторами) и других ярко выраженных неметаллических свойств. [c.398]

    Простейшая структурная единица, которая может дать четыре тетраэдрические связи, — это атом элемента IV группы периодической таблицы, и соответственно такую сетку мы обнаруживаем в структурах алмаза, устойчивых при атмосферном давлении форм кремния и германия и серого олова. Алмазоподобная структура серого олова устойчива при температуре ниже 13,2°С выше этой температуры происходит переход в белое олово. На рис. 3.36 представлена структура серого олова, в которой выделена тетрагональная ячейка (ось а под уг- [c.150]


Рис. 3.2. Зонная структура алмаза, кремния, германия и серого олова по Герману и др. [84]. Рис. 3.2. <a href="/info/1618252">Зонная структура алмаза</a>, кремния, германия и <a href="/info/70903">серого олова</a> по Герману и др. [84].
    СТРУКТУРА ЗОНЫ ПРОВОДИМОСТИ И ПОЛНАЯ ЗОННАЯ СТРУКТУРА АЛМАЗА И КРЕМНИЯ [c.135]

    Однако молекула j имеет избыточные орбитали и недостаточное для их заполнения число электронов, поскольку вокруг каждого ее атома недостает электронов для завершения октета. Каждый атом углерода обладает тенденцией к образованию четырех двухэлектронных связей, как это видно на примере двух его основных аллотропных модификаций - алмаза и графита (рис. 14-5). По аналогичной причине Sij также является электроннодефицитной системой, которая не существует в виде индивидуальных молекул в кристаллическом кремнии. Структура кристаллического кремния скорее напоминает структуру алмаза (рис. 14-5,а). [c.603]

    В периодической системе нет резкой границы между элементами с металлической структурой и элементами с ковалентной каркасной структурой (рис. 14-8). Это видно из того, что кристаллы некоторых элементов обладают свойствами, промежуточными между проводниками и изоляторами. Кремний, германий и а-модификация олова (серое олово) обладают кристаллической структурой алмаза. Однако межзонная щель между заполненной и свободной зонами в этих кристаллах намного меньше, чем для углерода. Так, ширина щели для кремния составляет всего 105 кДж моль (Как мы уже знаем, для углерода она равна 502 кДж моль .) Для германия ширина межзонной щели еще меньше, 59кДж моль а для серого олова она лишь 7,5 кДж моль Ч Металлоиды кремний и германий называются полупроводниками. [c.631]

    В виде Простых веществ углерод и кремний при комнатной температура — твердые вещества. Структура и связи в модификациях углерода обсуждались в разд. 32.2.3. По кристаллическому строенгпо кремний аналогичен алмазу. Особый интерес представляют свойства кремния как полупроводника. Температуры плавления простых веществ в группе понижаются с уменьшением энергии связи X—X. [c.555]

    И сам углерод, и его аналоги могут существовать в нескольких аллотропических модификациях. Если для типичных неметаллов, например кислорода и серы, явление аллотропии связано с возможностью образования молекул различного состава, то в простых телах кристаллической структуры, например у у1 лерода, олова, кремния, аллотропия связана с возможностью построения кристаллических решеток различного типа. Так, в кристаллической структуре алмаза каждый атом углерода связан четырьмя связями с другими атомами таким образом, что все углы между связями равны 109,5°. Модель кристаллической решетки алмаза можно получить, если поместить атом углерода в центр тетраэдра на пересечении его высот и соединить его с четырьмя Е ершинами тетраэдра, поместив в них еще четыре атома углерода рассматривая каждый из этих атомов как центр нового тетраэдра, можно таким путем воспроизвести всю решетку. [c.95]

    В атомных решетках между атомами осуществляются гомеополярные связи. Естественно поэтому, что характер решетки (число и расположение соседей около каждого атома) определяется числом и расположением валентностей. На рис. ХХИ1.2 изображена структура алмаза (характерная вообще для элементов четвертой группы периодической системы — кремния, германия и серого олова). Каждый атом углерода располагается в центре тетраэдра и направляет свои четыре а-связи к четырем соседям. [c.495]

    Кристаллы со структурой алмаза (германий, кремний, арсенид галлия и др.) как при естественном росте, так и прн искусственном выращивании стремятся принять октаэдрическую форму. Это стремление проявляется в том, что при выращивании кристаллов вытягиванием из расплава монокристалл растет не в форме правильного цилиндра с гладкой поверхностью, а имеет на ней более или менее широкие полосы, распределенные по периметру поперечного сечения строго в соответствии с ориентировкой. Если монокристалл ориентирован по осп роста параллельно направлению (III), то хорошо просматриваются три вертикальные полосы, расположенные сим-ме рично через 120°. При направлении роста (100) образуются четыре вертикальные полосы, расположенные на цилиндрической поверхности через 90°. Внешние признаки такого рода могут быть использованы при определении кристаллографической [c.59]

    Правило октета позволяет определить размещение элементарных полупроводников и компонентов полупроводниковых соединений в Периодической системе. В самом деле, насыщенные ковалентные связи могут существовать в кристаллах Si, Ge, a-Sn, Р, As, Sb, S, Se, Те, I2, которые расположены компактной группой на границе между типичными металлами и неметаллами. В химическом отношении, следовательно, элементарные полупроводники, как правило, обладают амфотерными свойствами. Наиболее ярко выражены полупроводниковые свойства у элементов IV группы, кристаллизующихся в структуре алмаза с тетраэдрической ориентацией атомов. Полупроводниковые свойства характерны и для бинарных соединений, составные элементы которых равноотстоят от элементов IV группы (AiiiB ",AiiB "i, АШ " ). Сумма номеров групп, в которых находятся компоненты этих соединений, равна восьми, что соответствует общему количеству валентных электронов на формальную единицу. По этому признаку формируются так называемые изо-электронные ряды кремния, германия и серого олова  [c.319]

    Физические свойства. Полученный указанными выше способами аморфный кремний представляет собой бурый порошок с температурой плавления 1420°С. Существует и другая аллотропная модификация кремния — кристаллический кремний. Это твердое вещество темно-серого цвета со слабым металлическим блеском, обладает тепло-и электропроводностью. Кристаллический кремний получают перекристаллизацией аморфного- кремния. Аморфный кремний является более реакционноспособным, чем химически довольно инертный кристаллический кремний. Кристаллический кремний — полупроводник, его электропроводность возрастает при освещении и нагревании. Это обусловлено строением кристаллов. Структура кристаллического кремния аналогична структуре алмаза. В его кристалле каждый атом окружен тетраэдрически четырьмя другими и связан с ними ковалентной связью, хотя эта связь значительно слабее, чем между атомами углерода в алмазе. В кристалле кремния даже при обычных [c.419]

    Полупроводники и изоляторы. Известно, что каждый атом кремния тетраэдрически окружен другими атомами. Его кристаллическая структура напоминает структуру алмаза. Каждый атом кремния связан четырьмя равноценными связями с такими же атомами. Химические связи осуществляются гибридными орбиталями 5р -типа. [c.131]

    Свойства. Кремний — кристаллическое вещество темно-серого цвета с металлическим блe кoмJ Он образует одну устойчивую аллотропную модификацию, структура которой аналогична структуре алмаза (см.рис. 9.1). В отличие от алмаза кремний является полупроводником. Это объясняется тем, что некоторые ковалентные связи между атомами достаточно легко разрушаются, что обусловливает некоторую подвижность электронов в кристалле. [c.177]

    Кремний никогда не встречается в природе в свободном состоянии, однако на его долю приходится около 28% состава земной коры, куда он входит в виде 8102 и других силикатных соединений. Элементарный кремний получают восстановлением 8102 или 81С14. При восстановлении 8102 углеродом в электродуговой печи получается кристаллический кремний серого или серебристо-белого цвета. Структура кристаллического кремния аналогична структуре алмаза — каждый атом кремния связан с четырьмя соседними атомами а-связями. Все эти а-связи располагаются под тетраэдрическими углами друг к другу и образуют непрерывный пространственный каркас структура кристаллического кремния относится к кубической системе (см. рис. 10.16). Однако, поскольку длина связей 81 — 81 на 65% больше длины связей С — С, кристаллы кремния значительно уступают алмазу по твердости. [c.400]

    Карбид кремния (т. пл. 2600° С, плотность 3,20), который известен также под названием карборунд , является трехмерным полимером со структурой, сходной со структурой алмаза. Он кристаллизуется таким образом, что каждый атом углерода окружен четырьмя атомами кремния и каждый атом кремния окружен четырьмя атомами углерода [202]. Карборунд получается в электрических печах при нагревании смеси кварцевого песка с коксом в присутствии небольших добавок древесных опилок и поваренной соли до 1800—2000° С [201]. Реакция протекает по уравпе-вию [c.343]

    Атомные кристаллы сравнительно немногочисленны обычно ими являются соединения некоторых металлов с неметаллами, причем и те и другие принадлежат к средним группам периодической системы. Другим примером может служить карборунд З С он имеет структуру алмаза, но в нем каждый атом углерода окружен тетраэдрически четырьмя атомами кремния, и обратно. Такую же структуру имеет открытая недавно форма нитрида бора ВН — боразан эта структура называется структурой сульфида цинка 2п5. ВМ изоэлектронен с алмазом (см. стр. 115), но образование четырех ковалентных связей, очевидно, приводит к появлению на каждом атоме бора формального отрицательного заряда, а на каждом атоме азота — формального положительного заряда. В 2п5 это разделение зарядов проходит еще дальше, хотя 2пЗ отнюдь не является ионным кристаллом (см. обсуждение на стр. 248). В разных формах кремнекислоты также имеется тетраэдрическое расположение атомов кремния  [c.242]

    Кремний, германий и серое олово также кристаллизуются с образованием структуры алмаза. Обычное олово (белое олово) и свинец имеют металлические структуры (см. гл. XXIV).  [c.187]

    Элементарный германий, так же как и кремний, представляет собой полимер со структурой алмаза. Расаоложенный в периодической системе элементов рядом с кремнием, германий обладает одинаковым с ним электронным строением и свойствами. [c.414]


Смотреть страницы где упоминается термин Кремний структура алмаза: [c.145]    [c.145]    [c.32]    [c.46]    [c.128]    [c.60]    [c.144]    [c.150]    [c.46]    [c.104]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алмаз

Алмаза структура



© 2025 chem21.info Реклама на сайте