Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий термическим разложением

    Гексахлороплатинаты рубидия и цезия достаточно термически устойчивы. Медленное разложение становится заметным выше 409—420° при 670—750 оно ускоряется, но не заканчивается даже при 1000°.  [c.107]

    Хлориды рубидия и цезия — термически устойчивые соединения, плавящиеся без разложения с незначительным улетучиванием. Упругость паров хлоридов калия, рубидия и цезия при 903—906° С составляет соответственно 0,0078 0,0248 0,0803 мм рт. ст. [156]. Было установлено [158, 159], что в сильном потоке водяного пара при 800° С летучесть хлоридов рубидия и цезия повышается, при обычном же выпаривании водных растворов этих солей никакого испарения хлоридов не наблюдается. Следует иметь в виду, что хлориды рубидия и цезия в парах воды при 550—900° С [c.96]


    Термическое разложение нитратов с выделением кислорода происходит выше их температур плавления и начинается у нитрата рубидия при 430° С, а у нитрата цезия при 490° С [285]  [c.122]

    По одной из разработанных в СССР схем перед операцией прокаливания производится уменьшение объема осадка ферроцианида никеля путем поочередной промывки его разбавленными растворами азотной кислоты и гидроокиси натрия [309]. Сначала осадок ферроцианида никеля вместе с некоторым количеством гидроокиси железа обрабатывают азотной кислотой для растворения Ре(ОН)з, а затем промывают разбавленным раствором гидроокиси натрия. В результате ферроцианидный осадок частично разрушается с выделением в раствор K4[Fe( N)e] и образованием гидроокиси никеля. При последующей промывке осадка азотной кислотой гидроокись никеля удаляется. Предполагается, что в результате этих операций молекула ( s, Rb)2Ni[Fe( N)e] не разрушается и поэтому концентрация цезия и рубидия в осадке повышается. Затем осадок дважды промывают водой и подвергают термическому разложению. [c.330]

    Кривые термического разложения хлоратов натрия, калия, рубидия и цезия при температуре 450° показаны па рис. 1. На оси абсцисс отложено время нагревания, на оси ординат — процент разложения хлората за 100% при этом принималась потеря в весе, отвечающая полному разложению хлората на хлорид (твердый остаток) и кислород. [c.110]

    Обычно для получения металлических рубидия и цезия применяют методы металлотермического восстановления. Реже и в меньших масштабах используют методы термического разложения солей. В принципе можно получать рубидий и цезий электролизом из расплавов. В настоящее время разрабатываются также методы прямого получения цезия из поллуцита [13, 50]. [c.98]

    Термическое разложение азида цезия [c.127]

    В литературе описан ряд чисто химических методов получения карбонатов рубидия и цезия термическим разложением оксалатов и других солей органических кислот, взаимодействием гидроокисей рубидия и цозия с углекислотой или карбонатом аммония по реакции между сульфатами рубидия и цезия с гидроокисью бария с последующей карбонизацией раствора [1, 2]. В частности, из хлоридов рубидия и цезия карбонаты этих металлов могут быть получены следующими двумя способами а) хлорид обрабатывают крепкой азотной кислотой до удаления хлористого водорода и образовавшийся нитрат прокаливают с 4-кратным избытком щавелевой кислоты [4 б) хлорид обрабатывают концентрированной серной кислотой, полученный сульфат растворяют, добавляют гидроокись бария, раствор отделяют от осадка сульфата бария, насыщают углекислотой, выпаривают досуха и осгаток прокаливают [2]. [c.74]


    В технике калий получают натрийтермическим методом из расплав- ленного гидроксида или хлорида, рубидий и цезий — методами метал-лоте 1МИИ и термическим разложением соединений. Калий и его ана- [c.491]

    В технике калий получают натрийтермическим методом из расплавленного гидроксида или хлорида, рубидий и цезий — методами металлотермии и термическим разложением соединений. Калий и его аналоги хранят в запаянных сосудах. Калий, кроме того, можно сохранять в керосине. [c.594]

    Технологические же достоинства АнГ исключительно высоки АнГ легко и просто синтезируются, выделяясь из растворов в виде хорошо фильтрующихся кристаллических осадков, характеризуются высокими температурными коэффициентами растворимости и высокой (в среднем 10—30) кратностью очистки. Применение АнГ как промежуточных технологических продуктов полностью исключает дополнительные операции по очистке, так как нелетучие ионы в процесс не вводятся, перевод АнГ в очищенные соединения (простые галогениды) достигается термическим разложением при невысокой температуре и полной регенерации галогенов и межгалогенов. Все это и определяет выбор АнГ и эффективность их использования для получения наиболее чистых соединений рубидия и цезия. Этим же объясняется то обстоятельство, что АнГ широко применяются в лабораторной практике и твердо прокладывают себе путь в технологию. Выше можно найти немало примеров, подтверждающих высказанную мысль. [c.152]

    Термическое разложение солей. Метод применяется редко и в весьма ограниченных масштабах, но имеет ссобое значение для получения небольших количеств спектрально чистых, не содержащих газов рубидия и цезия, предназначаемых для определения их термодинамических и физических констант [7,8,14].Немногие соли рубидия и цезия (гидриды, азиты, ферроцианиды) разлагаются при нагревании в вакууме, выделяя металл [7, 8]. Лучшие результаты дает медленное разложение азидов рубидия и цезия при нагревании (390—400 ) в вакууме (0,1 мм рт. ст.) в кварцевых сосудах илитруб- [c.155]

    Соединения типа АХО где А--КЬ или Ся, X — галоид, представляют в настоящее 1время интерес по крайней мере в двух отношениях. Во-первы,ч, благодаря высокому температурному коэффициенту растворимости и сравнительно низким температурам термического разложения эти соединения могут быть использованы для глубокой очистки рубидия и цезии от примесей и последующего получения высоко чистых галогснидов этих металлов — важнейших материалов для специальной оптики и других областей новой техники. Во-вторых, хлораты, броматы и йодаты рубидия и цезия могут получить непосредственное применение благодаря собственным физическим свойствам, в частности пьезоэлектрическим. В обоих случаях необходимы препараты высокой чистоты. Наконец, очищенные соединения могут быть использованы для получения других (кроме галогенидов) высоко чистых солей рубидия и цезия. [c.77]

    Разложение кремнемолибдатов рубидия и цезия протекает при 400—450° С в токе нагретого хлористого водорода, пропускаемого через четыреххлористый углерод. Четыреххлористый углерод в результате термического разложения образует СгСЦ и СЬ. препятствующие восстановлению молибдена и тем самым возникновению менее летучих его соединений [258]  [c.299]

    Изложенные выше способы кристаллизации аннонгалогенаатов рубидия и цезия позволяют рекомендовать один из вариантов комплексной схемы (рис. 41) промышленного производства особо чистых галогенидов рубидия и цезия из технических солей [444]. Применение подобной схемы дает возможность утилизировать не только маточные растворы, но и галогены, и межгалоидные соединения, выделяющиеся при термическом разложении анионгалоге-наатов. [c.366]

    Комплексные ферроцианиды цинка, кобальта, никеля, молибдена, ванадия и вольфрама также проявляют высокую селективность к ионам цезня [19-24]. По аналогии с другими неорганическими ионообменниками их селективность повышается в ряду Li < Na < К < Rb s. Так как сродство к ионам s у некоторых неорганических ионообменников чрезвычайно велико, s очень трудно элюировать из обменника. В этом случае в качестве элюентов используют концентрированные растворы нитратов аммония, серебра или ртути(П). Если количественное элюирование цезия этими растворами невозможно, рекомендуется проводить химическое или термическое разложение обменника. Цезий не поглощается Th[Fe( N)g] и Zr[Fe( N)g] и лишь слабо сорбируется на (ThO)2[Fe( N)e]. [c.158]

    Гюнтельберг [27] произвел исключительно точные измерения электродвижущих сил указанных элементов, содержащих хлориды лития, натрия, калия и цезия при общей концентрации 0,1 М при 20 и 2 °. В связи с тем, что Гюнтельберг обнаружил в этой работе ошибку, обусловленную присутствием следов иона брома в растворах хлористых солей, соответствующие старые исследования были им повторены, за исключением измерения электродвижущих сил элементов, содержащих хлористый цезий. В этой работе применялись два типа электродов серебро-хлорид серебра, потенциал которых отличался на постоянную величину 0,185 мв. Один из электродов, дававший большую электродвижущую силу, был приготовлен из серебра, полученного путем осаждения из раствора азотнокислого серебра при действии сернокислого закисного железа. Второй электрод был получен путем электролитического осаждения серебра из раствора азотнокислого серебра. Элемент с электродом первого типа имел при концентрации соляной кислоты, равной 0,1 М, электродвижущую силу 0,35316 при 20° и 0,35233 при 25°. Харнед и Элерс [28] получили при этих же температурах соответствующие значения 0,35322 и 0,35239, применяя электроды, приготовленные путем электрического осаждения хлористого серебра на серебре, полученном термическим разложением окиси серебра. Воспроизводимость элементов Гюнтельберга была порядка 0,02 мв, средние значения определялись с точностью 0,01 мв. ц, [c.427]


    Гохман [73] получил ряд силицидов щелочных металлов (натрия, калия, рубидия и цезия) прямым синтезом из элементов в корундовых тиглях в атмосфере аргона. Применялся 3—4-кратный избыток щелочного металла. Силицид натрия Ма81 получался при температуре 700° с выдержкой в течение 24 час. Избыток натрия удалялся дистилляцией в вакууме. Полученный силицид натрия при плохой кристаллизации воспламеняется на воздухе. С водой и кислотами это соединение реагирует. Нагреванием в высоком вакууме в стеклянной трубке найдено, что при температуре 240° моносилицид натрия разлагается, причем остается кремний, а натрий улетучивается. При этом не образовались силициды натрия с высоким содержанием кремния, как в случае термического разложения моносилицидов калия, рубидия и цезия. [c.45]

    Применение рекомендуемой комплексной методики получения особо чистых солей рубидия и цезия позволяет утилизировать маточные растворы полигалоидных соединений и галоиды, выделяющиеся при термическом разложении анион-галоидаатов. [c.147]

    Технологические же достоинства АнГ исключительно высоки АнГ легко и просто синтезируются, выделяясь из растворов в виде хорошо фильтрующихся кристаллических осадков, характеризуются высокими температурными коэффициентами растворимости и высокой (в среднем 10—30) кратностью очистки. Применение АнГ как промежуточных технологических продуктов полностью исключает дополнительные операции по очистке, так как нелетучие ионы в процесс не вводятся, перевод АнГ в очищенные соединения (простые галогениды) достигается термическим разложением при невысокой температуре и полной регенерации галогенов и межгалогенов. Все это и определяет выбор АнГ и эффективность их использования для получения наиболее чистых соединений рубидия и цезия. Этим же объясняется то обстоятельство, что АнГ широко применяются в лабораторной практике и твердо прокладывают себе путь в технологию. Выше можно найти немало примеров, подтверждающих высказанную мысль. Применение АнГ дает основания считать, что решение одной из труднейших задач в проблеме разделения близких по свойствам редких элементов (получение особо чистых соединений рубидия и цезия) можно считать найденным. Вместе с тем нельзя утверждать, что наиболее изученные к настоящему времени представители АнГ — единственно пригодные и лучшие для получения особо чистых соединений рубидия и цезия. Хотя, если исходить из наших сегодняшних знаний [c.152]

    Термохимическое разложение воды изучается давно. В 1924г. был выдан английский патент, в котором водород было лредлохено получать взаимодействием ртути и воды, затем ртуть регенерировать из окиси ртути термическим разложением. Однако необходимые термодинамические условия не удалос обеспечить. Цикл химических реакций с получением водорода из воды был затем запатентован в США [ Ъ]. В этом цикле предложено использовать цезий и его окислы. Недостатком метода является необходимость ведения рес ц1Н разложения воды при 1300°С. [c.37]

    Рассматриваемые металлы при нагревании и освещении сравнительно легко теряют электроны. Эта способность К, Rb и s делает их ценным материалом для изготовления фотоэлементов. В технике калий получают натрийтерми-ческим методом из расплавленного гидроксида или хлорида. Рубидий и цезий получают методами металлотермии и термическим разложением соединений. [c.567]

    Хлориды рубидия и цезия достаточно термически устойчивы плавятся без разложения с незначительным улетучиванием, которое наступает несколько ниже температуры их плавления [95]. Полная картина изменения давления паров МеС1 в интервале 800—1400° представлена на рис. 16 [31]. В вакууме при 440°скорость сублимации s l значительно выше, чем Rb l, и тем более выше,чем КС1. Это может представить интерес в плане разделения трех близких по свойствам щелочных металлов в виде их хлоридов [61. [c.101]

    Применение фторида цезия для удаления фтористого водорода приводит к образованию особенно чистого полимера, который осаждается в форме плотного белого каучукообразного вещества. Полимер, полученный таким путем, растворим в оксихло-риде фосфора или в диметилформамиде и обладает минимальным молекулярным весом 20 000. Полимерный нитрид оксифторида серы можно также получить непосредственно из тионилтетрафторида при его взаимодействии с двумя эквивалентами аммиака [32] или термическим разложением аммониевой соли с анионом Ы50р2 [31]. Связь сера — фтор восприимчива к воздействию азотсодержащих оснований при повышенных температурах. Поэтому полимерный нитрид оксифторида серы, полученный в присутствии избытка аммиака, может иногда образовывать поперечные связи между цепями. [c.49]

    В 1930 г. Клузиус[ ], исследуя процесс термического разложения азидов рубидия и цезия, обнаружил, что раствор продуктов разложения содержит следы веществ, восстанавливающих сульфаты серебра и меди. Аналогичное заключение сделали Гюнтер, Андреев и Рингбом[ ], исследуя процесс термического разложения азида бария. Эти авторы предположили, что разложение азида бария совершается с образованием в качестве промежуточного продукта гидра-зида бария Ba2N2. В 1934 г. Хартманн р ] сообщил об образовании пернитридов стронция и кальция при разложении в высоком вакууме ЙЙадов этих металлов при температуре 400—500°. Эти пернитриды [c.9]

    При выборе неорганической добавки следует помнить о ее влиянии на термоокислительную деструкцию связующего. Установлено, что ингибиторы разложения ПХА могут катализировать термодеструкцию дивинилстирольного каучука, и их введение в состав термостойкого топлива приведет к снижению уровня термостойкости. С учетом влияния как на термическое разложение ПХА, так и термоокислительную деструкцию связующего в качестве неорганических добавок бьши выбраны фосфаты цезия и однозамещенного аммония. Применение комплексной системы ингибирования, включающей в себя органические антиоксиданты и неорганические ингибиторы, позволило повысить уровень термостойкости топлив на основе ПХА до 240°С, а на основе ПХК - до 310°С. Введение в состав топлива индивидуальных или органических антиоксидантов или неорганических веществ при увеличенном их содержании не позволяет повысить термостойкость топлив до нужного уровня. [c.87]

    Одно из важных свойств солей ЩЭ — закономерное изменение термической устойчивости в ряду Li— s для соли данного стехиомет-рического состава. Из общих соображений, например основанных на учете поляризующего действия катиона ЩЭ на тот или иной анион, следует, что при наиболее низкой температуре будут разлагаться соли лития (твердый бикарбонат LiH Os настолько неустойчив, что его в отличие от других М НСОз нельзя выделить в твердом состоянии), при наиболее высокой — соли цезия [1]. Однако очень часто эта закономерность существенно усложняется. Причиной является не только изменение кристаллической структуры солей ЩЭ в ряду Li— s, но и разница в составе и свойствах продуктов разложения. Например, если термолиз карбоната лития протекает по простой схеме [c.20]


Смотреть страницы где упоминается термин Цезий термическим разложением: [c.99]    [c.152]    [c.477]    [c.27]    [c.343]    [c.46]    [c.343]    [c.99]    [c.152]    [c.49]    [c.212]    [c.138]    [c.427]    [c.42]    [c.51]    [c.49]    [c.229]    [c.288]    [c.42]    [c.50]    [c.56]   
Неорганическая химия Том 1 (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2024 chem21.info Реклама на сайте