Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Медь металл

    Подготовка электролита. Вследствие расхождения Вт(а) и Вт(к) электролит обогащается медью. Переход с анода в раствор избыточного количества меди, а также ионов металлов, не осаждающихся на катоде (никеля, цинка и железа), способствует уменьшению концентрации серной кислоты в растворе. Поэтому состав электролита следует корректировать по содержанию меди, серной кислоты и накапливающихся примесей. Регенерация электролита до постоянного заданного состава проводится в отделении регенерации. Избыток меди удаляется электроэкстракцией в ваннах регенерации с нерастворимыми анодами либо в виде кристаллов медного купороса. Оба продукта в дальнейшем используются. [c.309]


    При образовании некоторых, сульфидов и их аналогов (например, щелочных и щелочноземельных металлов, магния, цинка) выделяется много теплоты, реакция протекает очень бурно, и ампула, особенно стеклянная, разрушается. Поэтому металл следует брать не в виде тонкого порошка, а в виде стружки, мелких гранул или крупки. Щелочные и щелочноземельные металлы и некоторые другие разрушают стекло и загрязняют продукты реакции соединениями кремния. Поэтому их сульфиды получать таким способом нельзя. Этим методом можно получать сульфиды, селениды элементов подгруппы железа, хрома, ванадия, титана, галлия, а также меди, серебра, марганца. В тех случаях, когда вещество пе плавится, обычно после 1—2-часового нагревания прп температуре, рекомендованной в прописях, оно будет неоднородно по составу. Рекомендуется ампулу разбить, вещество растереть в ступке, снова поместить в ампулу, запаять ее, а затем назревать в течение 2—3 ч (можно еще раз не нагревать, но тогда процесс должен длиться 10—15 ч). [c.47]

    Никелевым рудам сопутствуют не только минералы меди и железа, но и кобальта, мышьяка, селена, теллура, в малых количествах— минералы свинца, цинка, висмута, а также ценных металлов— платины, палладия, родия, золота, серебра. Поэтому при производстве никеля извлекается ряд других металлов и соединений. [c.287]

    Первые данные о возможности технического получения органических соединений из смеси СО+Н под давлением относятся к 1913 г. [8, 37]. По этим данным газовую смесь надо пропускать при ЗеО—420 и 120—150 ат над такими катализаторами, как окислы Се, Сг, Со, Мп, Мо, Оз, Рс1 и др. Пригодны также карбиды металлов и чугун. Катализаторы, применяемые на носителях, необходимо активировать добавками щелочей. П[)оцесс синтеза очень экзотермичен, поэтому теплопроводность катализаторов следует повышать нанесением их на металлические сетки, добавкой меди и т. п. [c.708]

    Магнитные свойства простых веществ также обнаруживают периодическую зависимость от порядкового номера элемента (рис. 126), но закономерности, которым подчиняется эта зависимость, требуют пояснения. В стандартных условиях простые вещества находятся в разном агрегатном состоянии. Все газообразные и жидкие простые вещества являются диамагнитными. Единственным исключением является кислород, парамагнетизм двухатомной молекулы которого объясняется с позиций метода МО. Сложнее обстоит дело с кристаллическими веществами. Магиитные свойства крист аллов определяются главным образом тремя вкладами диамагнетизмом атомного остова, орбитальным диамагнетизмом валентных электронов и спиновым парамагнетизмом. У неметаллов, в кристаллах которых доминирует ковгшентная связь, вклад спинового парамагнетизма пренебрежимо мал, поэтому все они диамагнитны. Парамагнитными свойствами обладают все переходные металлы с недостроенными и /оболочками, щелочные, щелочно-земельные металлы и магний, а также алюминий. -Металлы с заполненными внутренними оболочками (подгруппы меди и цинка) диамагнитны, так как у них спиновый парамагнетизм не перекрывает двух диамагнитных составляющих (орбитального диамагнетизма валентных электронов и диамагнетизма атомного остова). По той же причине диамагнитными свойствами обладают металлы подгруппы галлия, олово и свинец. [c.248]


    Более 100 лет назад немецкие химики Цейзе, а затем Бирнбаум синтезировали и выделили твердые комплексные соединения олефиновых углеводородов Сз—Св с платиной (соли Цейзе). В последующий период многими исследователями было установлено, что способностью к образованию твердых и жидких комплексов с непредельными соединениями обладают также медь, серебро, железо н ряд других металлов переменной валентности. В основе комплексообразования лежит взаимодействие я-электронов двойных связей олефннового компонента (лиганда) с незаполненными орбиталями атома (иона) металла. Например, структура соединения (так называемого л-комплекса) ди- винила с хлористой платиной состава (Р1С12 )2-(С4Н )2 может быть представлена в виде  [c.302]

    Содержание железа в зольной части загрязнений в ряде случаев превышает концентрацию кремния. Железо, а также медь, цинк и некоторые другие металлы попадают в бензин в основном в виде продуктов коррозии заводской аппаратуры, резервуаров, деталей системы питания двигателя, а также за счет износа деталей перекачивающих средств. Обращает внимание от- [c.311]

    Металлы характеризуются ковкостью. Металлом называется светлое тело, которое ковать можно , так писал Ломоносов. Они обладают также тягучестью металлы можно вытягивать в тонкую проволоку. Однако эти свойства у различных металлов выражены далеко не одинаково. Способность выковываться в тонкие листы в наибольшей степени проявляется у золота, серебра и меди. Металлы ЗЬ, В1, Мп относятся к числу хрупких, ковка и прокат их затруднительны. Соответственно и по способности быть вытянутыми в тонкую проволоку на первом месте стоят золото и серебро, на последнем — висмут и марганец. [c.298]

    В некоторых случаях эта реакция может служить для получения металлической меди. Однако, как всегда бывает, при получении необходимого продукта какое-нибудь другое вещество расходуется. В данном случае такое расходуемое вещество - также полезный металл магний. [c.152]

    Цепи могут обрываться также при взаимодействии радикалов с ингибиторами. В качестве ингибиторов могут использоваться малоактивные стабильные свободные радикалы, например дифе-нилпикрилгидразил, Ы-оксидные радикалы, которые сами не инициируют полимеризацию, но рекомбинируют или диспропорциони-руют с растущими радикалами. Ингибиторами могут служить также вещества, молекулы которых, взаимодействуя с активными радикалами, насыщают их свободные валентности, а сами превращаются в малоактивные радикалы. К числу последних относятся хиноны (например, бензохинон, дурохинон), ароматические ди- и тринитросоединения (динитробензол, тринитробензол), молекулярный кислород, сера и др. Ингибиторами могут быть также соединения металлов переменной валентности (соли трехвалентного железа, двухвалентной меди и др.), которые обрывают растущие цепи за счет окислительно-восстановительных реакций. Часто ингибиторы вводят в мономер для предотвращения их преждевременной полимеризации. Поэтому перед полимеризацией каждый мономер необходимо тщательно очищать от примесей и добавленного ингибитора. [c.11]

    Проведение опыта. Гидрозоли серебра и меди, а также других металлов мож- к получать распылением [c.156]

    По аналогичным уравнениям идет окисление металлов, нормальные электродные потенциалы которых имеют положительное значение, например висмута (при нагревании), меди, серебра, ртути, а также некоторых металлов, например свинца, нормальный электродный потенциал которого имеет отрицательное значение °= = —0,13 В, но по абсолютной величине весьма мало отличается от нормального электродного потенциала водорода. [c.187]

    Сульфидные полиметаллические никелевые руды содержат большее или меньшее количество меди (иногда в два раза больше, чем никеля), железо, некоторое количество кобальта, а также драгоценные металлы. Естественно, что переработка таких руд должна предусматривать комплексное и наиболее полное извлечение не только никеля, но и других ценных составляющих. [c.289]

    Первоначально в качестве экстрагента использовался диэтиловый эфир. Однако его летучесть и огнеопасность заставили искать другие реактивы. Из кислородсодержащих органических растворителей (спиртов, сложных эфиров, кетонов) наилучшим оказался бутилаце-тат. Если при экстракции галлия из солянокислого раствора диэтиловым эфиром коэффициент распределения (при кислотности 5,5 н.) равен максимально 75, то при экстракции бутилацетатом (кислотность 6 н.) он превышает 400. Коэффициент разделения галлия и алюминия при экстракции этим реагентом практически не зависит от соотношения их концентраций в растворе и составляет 2-10 [901. Еще больший коэффициент распределения галлия получен при экстракции метилизобутилкетоном ( 2800). Однако этот растворитель недостаточно селективен — экстрагирует не только трехвалентное, но и двухвалентное железо, а также медь, цинк, ванадий и другие металлы [75]. [c.253]

    В кек переходят соединения, нерастворимые в слабой серной кислоте, сульфид и ферриты цинка, а также часть окиси цинка, окомкованная в процессе обж ига. Кроме цинка, в кеках содержится свинец, медь и небольшие количества рассеянных элементов С(1, 1п, Оа, Ое, а также благородные металлы Аи и А . [c.430]

    Электрон с мономера может передаваться также солям металлов. Так, полимеризация винилкарбазола инициируется солями железа, меди, церия в апротонных растворителях, тогда как в спирте и воде полимеризации не происходит. [c.97]


    Табл. IX.3 характеризует тенденцию металлов и металлоидов переходить в раствор в виде ионов. Металлы, стоящие в таблице выше водорода, заряжаются отрицательно по отношению к водородному электроду, а ниже — положительно при условии равенства единице активностей всех ионов, участвующих в реакции. Очевидно также, что металлы, стоящие в таблице выше, являются менее благородными по сравнению с расположенными ниже и вытесняют из раствора металлы или металлоиды с меньшими значениями нормального потенциала (при одинаковых активностях ионов). Так, например, при активностях ионов никеля и меди, равных единице, в элементе [c.182]

    Олово находит широкое применение для нанесения защитных покрытий на железо. Покрытие оловом производят погружением чистых железных листов в расплавленное олово или электролитическим осаждением. Оловом иногда покрывают также медь и другие металлы (лужение).  [c.539]

    Названием благородные металлы объединяются элементы пятого и шестого периодов, являюп иеся аналогами элементов семейства железа — меди. К благородным металлам, таким образом, относятся в пятом периоде рутений, родий, палладий и серебро, а в шестом— осмий, ирилий, платина и золото. Эти элементы, за исключением серебра и золота, называют также платиновыми металлами или платиноидами. [c.324]

    В пламени с большой точностью и высокой чувствительностью легко определяются многие элементы все щелочные и щелочноземельные металлы, а также медь, марганец, хром, железо и другие металлы. Из-за сравнительно низкой температуры пламени многие вещества, введенные в пламя или образовавшиеся в нем, находятся в виде двухатомных молекул. Молекулярные полосы, излучаемые возбужденными молекулами, используют для аналитических целей, например для определения бора, алюминия и других элементов. [c.274]

    Аргонодуговую сварку, обеспечивающую высокое качество шва благодаря надежной защите от окисления расплавляемого металла, применяют при изготовлении конструкций из нержавеющих и жаропрочных сталей, а также цветных металлов (алюминия, меди, магния, титана, циркония, тантала, ниобия) и их сплавов. [c.293]

    Анодный процесс сопровождается образованием шлама. Количество шлама достигает 2—5% от веса растворившихся анодов. Шлам состоит из содержащихся в анодах сульфидов, окислов, шлаковых и других включений, а также содержит металлы платиновой группы, которые, являясь значительно более электроположительными, чем никель, не растворяются на аноде. В п лам переходит до 1% от содержания в анодах никеля, кобальта и железа и 5—20% меди. Основными компонентами шлама являются сульфиды этих металлов. При электролизе металлических анодов содержащиеся в них примеси сульфидов почти не растворяются, поэтому переход металлов в шлам и количество последнего резко возрастают с увеличением содержания серы в металлических анодах. На практике стремятся не допускать содержания серы в анодах выше 1%. [c.79]

    Си " " (водн.)+2в другие металлы, более активные чем медь (например, 2п, Ре) также переходят в раствор в виде ионов 3— электролит СиЗО( (водн.) постоянной концентрации 4 — меиее активные, чем медь, металлы (Ад, Аи) ие переходят в раствор и остаются в виде анодного шлака, из которого их можно извлечь [c.540]

    В чугунах и сталях определяют углерод (графит), марганец, никель, кобальт, медь, хром, алюминий, кремний, фосфор, серу и мышьяк, а также редкие металлы — титан, ванадий, молибден, вольфрам, цирконий, ниобий, тантал и др. [c.129]

    На рис. 4.22 приведены данные по коррозионной стойкости отечественных сталей в смеси окиси углерода и водорода. Максимальная скорость карбонильной коррозии наблюдается при 150—200 °С. При более высоких температурах скорость коррозии резко снижается для всех металлов высоколегированные стали типа 12X13, 12Х18Н9Т, а также медь и латунь в этих условиях являются корро- [c.235]

    Среди других шире всего применяют металлы на железной основе углеродистую сталь, чугун и нержавеющую сталь. Широко применяют в качестве конструкционных материалов также нежелезные металлы алюминий, медь и их сплавы. [c.101]

    Впрочем щелочи были не единственными, ярименявшимися. при окислении катализаторами. Для этого был Нредлюжда уголь, а также различные металлы, а именно ртуть, медь, латунь и фосфорная бронза.  [c.87]

    К числу наиболее распространенных катодных покрытий, обладающих более положительным потенциалом, чем потенциал защищаемого металла, относятся покрытия на основе хрома, никеля, кадмия, титана, меди, а также драгоценных металлов. Для получения таких покрытий разработан ряд способов, базирующихся на гальваническом и химическом осаждении, диффузионном насыщении из газовой, жидкой и твердой фаз, плакировании и др., которые подробно описаны в литературе. [c.174]

    Применение. Около 50% добываемой меди идет на изготовление проводоз (другим материалом для проводов является алюминий, однако его электропроводность меньше, чем у меди, он менее прочен и трудно паяется). Широко используют различные сплавы меди/ Наиболее применяемы латуни (сплавы, содержащие кроме меди 20—507о Zn, а также другие металлы), бронзы [сплавы меди с оловом (10—20%), бериллием, алюминием и другими металлами] и медноникелевые сплавы. [c.589]

    Соединения с щелочными и щелочноземельными металлами, а также с металлами подгрупп меди и цинка, разлагающихся водой, взаимодействуют с кислотами, с щелочами. При нагревании на воздухе и в парах галогенов воспламеняются, реагируют с парообразными или расплавленными серой, фосфором, селеном, теллуром. [c.58]

    Кроме щелочных металлов, для отщепления галоида пригодны также медь и серебро. Из 3-иодпропионовой кислоты Ж. Висли- [c.417]

    Органическая часть сернокислотных отходов состоит из углеводородов, эфиров, спиртов, альдегидов, кетонов сульфо- и карбоновых кислот, сульфонов и других сернистых соединений, солей азотистых оснований, смол, асфальтенов, карбенов и карбоидов [5]. В состав некоторых видов сернокислотных отходов входят также различные металлы (медь, никель, ванадий, железо и др.) в виде продуктов коррозии и металлоорганических соединений. [c.40]

    Непорредственно взаимодействуют с бромом только непрочные оксиды, например оксиды меди, свинца, а также щелочных металлов, дающие прочные бромиды. При бромировании оксидов устанавливается равновесие типа  [c.41]

    По другому методу окисление ведется в жидкой фазе изонропилбензола в присутствии катализаторов или некоторых добавок. Влияние температуры н количества катализатора на жидкофазное окисление изопропилбензола освещено выше. Средняя скорость окисления при 110—120° составляет 5— 7% в час. Чтобы увеличить скорость окисления, предлагается применять такие добавки, как СаСОз, КааСОд, щелочи, амины, пиридин, формиат натрия, а также соли металлов с переменной валентностью [34, 38—42]. Отмечалось [31 ] стабилизирующее и катализирующее влияние меди на образование гидроперекиси. При окислении изопропилбензола высокой чистоты в реакторе с медной насадкой и медными стенками при 120° скорость образования гидроперекиси составляла 11—12% в час, а выход ее 93— 97 % от теории. [c.515]

    Кроме того, следует учитывать, что толщина осадка зависит от расстояния между анодом и катодом. Способность раствора электролита при нанесении гальванических покрытий преодолевать эту зависимость называют его рассеивающей способностью (или, правильнее, его макрорассеивающей способностью). Медь — металл с высокой рассеивающей способностью, хром — металл с плохой рассеивающей способностью. На это свойство может влиять также состав ванны и режим ее работы. Из-за [c.87]

    З-Оксн-4-карбоксифенилиминодиуксусная кислота предложена ИРЕА в качестве нового комплексона [1]. Это соединение образует ряд прочных комплексов с металлами и представляет интерес для полярографического определения железа в присутствии свинца и меди, а также меди, свинца, висмута и кадмия в присутствии избытка таллия. [c.70]

    Золото, серебро, а также медь раньше называли металлами денежных знаков. Известно, что металлы стали использовать для платежей в виде слитков еще в И тысячелетии до н. э., а уже в VII в. до н. э. были отчеканены первые монеты из природного сплава золота с серебром. В те далекие времена среди многочисленных специфических свойств, необходимых металлу для выполнения роли всеобщего обменного эквивалента, важное место занимала способность металла длительное время сохранять неизменными свой внешний вид, форму, массу, что на языке химии определяется как высокая химическая, термическая, противокоррозионная и износостой- [c.160]


Смотреть страницы где упоминается термин также Медь металл: [c.61]    [c.277]    [c.88]    [c.827]    [c.272]    [c.159]    [c.236]    [c.263]    [c.280]    [c.584]   
Биохимия Том 3 (1980) -- [ c.442 ]




ПОИСК





Смотрите так же термины и статьи:

Медь ГЦК-металлы



© 2025 chem21.info Реклама на сайте