Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись этилена методы получения

    При прямом гомогенном окислении этилена кислородом - образуется ряд ценных продуктов окись этилена, формальдегид, органические кислоты. Долгое время внимание исследователей было сосредоточено на процессе окисления этилена до формальдегида. Действительно, получение формальдегида при окислении этилена кислородом при 400 или 600 °С одновременно с окисью этилена и другими кислородсодержащими соединениями в относительно простой аппаратуре, без применения дорогого катализатора представляет большой интерес. Не менее заманчивым является путь синтеза окиси этилена гомогенным окислением этилена в газовой фазе, так как для этого процесса не требуется затрат ни дорогого катализатора, ни хлора. Кроме того, прн этом способе получения окиси этилена не требуются этилен и воздух такой высокой степени очистки, как при каталитическом окислении этилена. К недостаткам этого метода относятся многообразие образующихся продуктов и низкая селективность, что объясняется цепной природой происходящих превращений и высокой температурой. Однако развитие теории цепных процессов открывает новые пути совершенствования реакций газофазного окисления этилена, поэтому можно надеяться, что этот процесс, находящийся пока в стадии лабораторно-модельных исследований, будет использован в промышленности для синтеза окисей олефинов. [c.187]


    Окись этилена присоединяет галоидоводороды, превращаясь в этилен-галоидгидрины, что представляет удобный препаративный метод получения этиленхлоргидрина или этиленбромгидрина  [c.369]

    При любом методе получения ацетилена из углеводородов— электродуговой крекинге, термическом или окислительном пиролизе получается смесь газов с содержанием ацетилена не более 15 объемн. % остальные 85% составляют водород, метан, этилен, окись углерода, углекислый газ (при окислительном пиролизе) и высшие гомологи ацетилена. Ввиду того что разбавленный указанными газами ацетилен нецелесообразно использовать непосредственно для синтеза, возникает необходимость в выделении ацетилена, концентрировании его и очистке от примесей. [c.70]

    Присоединение хлорноватистой кислоты к этилену с образованием этиленхлоргидрина — одна из наиболее важных химичес1 их реакций, с которых началось промышленное производство производных этилена в начале 1920 г. Лабораторный метод получения этиленхлоргидрина этим способом был описан Кариусом в 1863 г. С тех пор хорошо известна необыкновенная реакционная способность этого хлоргидрина и его почти количественное превращение в окись этилена, которая в настоящее время приобрела большое значение. Нефтяной газ с высоким содержанием этилена был известен и получался заводским путем из жиров уже с 1823 г., а из нефтяного газойля примерно с 1873 г. и до настоящего времени. Промышленное производство этиленовых производных в США никогда не базировалось в сколько-нибудь значительных размерах на исиользовании этилена, содержащегося в газах крекинга, получающихся как побочный продукт при производстве бензинов. Развитие этого направления использования этилена сильно ускорилось возможностями, появившимися вследствие открытия Гомбергом реакции этилена с разбавленной хлорноватистой кислотой в системе вода— хлор  [c.370]

    Часть циркулирующего газа непрерывно отводят и выделяют из него окись этилена. Общий выход составляет лишь 50/о от теоретического (в расчете на этилен), остальное теряется. В этом отношении прямое окисление менее экономично, чем метод получения окиси этилена через хлоргидрин. Правда, уже имеются сообщения о катализаторах, на которых выход достигает 60% от теоретического. [c.220]

    Первые указания, касающиеся подбора катализаторов, смогла дать теория промежуточных соединений. Она считала, что, например, при гидрогенизации этилена над никелем сначала образуется гидрид никеля, который, взаимодействуя с этиленом, образует продукт гидрогенизации этан. Аналогично при дегидратации спирта над окисью алюминия сначала с выделением воды образуется алкоголят алюминия, который далее распадается, образуя продукт реакции — этилен. Однако исследования, проведенные в нашей лаборатории совместно с Б. В. Ерофеевым [2], показали, что гидрид никеля, который был получен и свойства которого были исследованы, совсем не обладает свойствами, постулируемыми теорией промежуточных соединений. Мы также изучили совместно с В. В. Щекиным [3] кинетику распада этилата алюминия, который получили по методу В. Е. Тищенко, и нашли, что он совсем не дает продуктов реакции, требуемых теорией промежуточных соединений именно, вместо этилена из него образуется этиловый эфир, причем алкоголят разлагается при более высокой температуре, чем происходит каталитическая реакция образования этилена из спирта. Недавно совместно с Г. В. Исагулянцем и другими соавторами [4] мы, пользуясь радиохимическим методом, сравнили скорость образования этилена 1) непосредственно из этилового спирта и 2) через этилен. При этом оказалось, что идут обе реакции, причем при высокой температуре преобладает первая из них. Значительным недостатком теории промежуточных соединений является предполагаемое образование промежуточного соединения только с одним реагирующим веществом, например при гидрогенизации — только с водородом. Главным же недостатком теории промежуточных соединений является то, что она рассматривает фазовые промежуточные соединения и совершенно неспособна объяснить чрезвычайной чувствительности активности и избирательности катализаторов от их способа приготовления, от их генезиса. Так, например, окись тория, если ее, как обычно, получать прокаливанием нитрата, служит типичным катализатором дегидратации спиртов, однако если окись тория осадить аммиаком, то она является катализатором дегидрогенизации. Этот вопрос был недавно подробно изучен в нашей лаборатории (А. А. Толстопятова [5]). [c.7]


    Циклические кетоны. При облучении циклических кетонов ультрафиолетовым излучением образуются окись углерода и некоторые углеводороды [ИЗ—115]. Так, циклогексанон дает окись углерода и пентаметиленовый бирадикал, который в основном хотя и изомеризуется до циклопентана и пентена-1, однако распадается также с образованием небольших количеств этилена и пропилена 115]. Циклопентанон дает окись углерода, этилен и циклобутан. Выход циклобутана составляет 38%. При учете трудностей, возникающих при получении циклобутана другими методами, эта реакция может найти применение как метод синтеза циклобутана [116]. [c.256]

    Существенным недостатком процесса получения окиси этилена через этиленхлоргидрин является большой расход хлора и извести, а также значительные капитальные затраты. Этих недостатков в значительной мере лишен процесс прямого каталитического окисления этилена в окись этилена. При этом методе расходуются только этилен и воздух, не требуются затраты хлора и извести, не образуется побочный продукт — дихлорэтан, меньше капитальные затраты. Поэтому метод прямого окисления приобретает все большее распространение [138, 139]. [c.157]

    Наибольший интерес представляет метод получения пропионовой кислоты из этилена и окиси углерода. Этот синтез разработан в США на полузаводской установке [14]. В начале 1966 г. фирмой БАСФ (ФРГ) была пущена промышленная установка по производству пропионовой кислоты карбоксили-рованием этилена производительностью 20 тыс. т в год. По данным фирмы, указанным методом получается наиболее дешевая пропионовая кислота. Оригинальным представляется также процесс одновременного получения пропионовой кислоты и пропионового ангидрида. Сырьем здесь служат этилен и окись углерода в водном растворе пропионовой кислоты. [c.15]

    На заводах синтетического этилового спирта, работающих сернокислотным способом, возможно использование этилена в виде этан-этиленовой фракции с относительно широким интервалом концентрации этилена (35—95%). После извлечения этилена серной кислотой этан возвращается на пиролиз. В этом случае применяется одна колонна с небольшим числом тарелок для отгонки этан-этиленовой фракции, а кубовый продукт, содержащий этан, пропан, пропилен и высшие, возвращается на пиролиз. При получении синтетического этилового спирта. методом прямой гидратации требуется применение фракции Сг с содержанием этилена 1не менее 95%об. В ряде других производств (алкилирова-ние бензола с целью получения этилбензола, прямое окисление в окись этилена, получение хлорпроизводных) достаточно иметь газ с 90—95% содержанием этилена. На полимеразицию под высоким давлением и другими методами направляется этилен с концентрацией 99,9%. Применение высококонцептрированного этилена, выделение которого требует значительных затрат, в ряде случаев выгодно с технологической точки зрения, т. к. облегчается освобождение от других примесей, являющихся ядами катализаторов, отпадает необходимость ректификации при рециркуляции непрореагировавшего этилена. [c.68]

    Катализатором дегидрирования служит палладированный уголь, обработанный ноташом. Диол подается на катализатор в виде 20%-ного водного раствора. Выход пирокатехина достигает 75%. По аналогичным схемам моноокись винилциклогексена и окись фе-нилциклогексена могут быть превращены через стадию диола в этил- и фенилпирокатехины [218, 298, 299, 300, 301]. Вероятно, наиболее трудным вопросом при промышленной реализации указанных методов получения пирокатехинов является разработка достаточно активных и стабильно работающих катализаторов дегидрирования. Первые две стадии, естественно, особенных препятствий не встречают. Исходными веществами для синтеза циклогексена и фенилциклогексена служат бутадиен и этилен или бутадиен и стирол  [c.114]

    Фирма Филлипс петролеум Ко, США, разработала метод получения полиэтилена под низким давлепием. Наиболее благоприятным оказалось давление 35 ат, температура 160—250° [30]. По этому методу чистый этилеп, не содержаш ий кислорода, водяного пара и углекислоты, в присутствии растворителя, нанример ксилольной фракции, при 35 ат и соответствуюш ей чемнературе приводится в соприкосновение с катализатором, состояш,им из окиси молибдена или хрома, нанесенной на окись или силикат алюминия. Реакция проходит в автоклаве с мешалкой, в котором обеспечивается тесное вонрикосновение между этиленом и катализатором. Растворитель играет ван ную роль, лучше работать с максимально возможным избытком его (применяют такое количество ксилольной фракции, чтобы раствор содержал 7—8% вес. этилена). Растворитель предотвраш ает обрыв цени и дает возможность получить полимер высокого молекулярного веса. Растворитель поддерживает активность катализатора, так как он растворяет большую часть полимера, осаждаюш егося па катализаторе. Кроме того, растворитель служит для поглош ения тепла реакции. Процесс проводится непрерывно. Установка находится в стадии строительства. [c.582]


    Выход окиси этилена из этилена составляет при этиленхлоргидриновом методе около 75—80%. На получение 1 т окиси этилена расходуется 0,9 т этилена, 2,1 т хлора и 2 m негашеной извести. В настоящее время с этим процессом конкурирует прямое окисление этилена в окись этилена (гл. 9, стр. 159). При хлоргидриновом методе выход по этилену значительно выше, однако в связи с большими расходами хлора и извести он менее выгоден, чем метод прямого окисления. [c.188]

    При получении этилена из спирта по методу Ипатьева окись алюминия играет роль катализатора. Дегидратация спирта в присутствии А12О3 начинается уже при 240°, однако при этом процесс идет с образованием только этилового эфира этилен не образуется  [c.143]

    Полиэтилен — термопластичный полимер с относительно невысокой твердостью, не имеющий запаха и вкуса. Различные методы исследования (микроскопический, рентгено- и электронографический и др.) показывают, что полиэтилен обладает кристаллической структурой, аналогичной структуре нормальных парафинов (например, С60Н122 и др.). Степень кристалличности полимера, получаемого полимеризацией этилена, не достигает 100% наряду с кристаллической фазой всегда содержится аморфная. Соотношение этих фаз зависит от способа получения полимера и температуры. Подобно высокоплавким воскам и парафинам он медленно загорается и горит слабым пламенем без копоти. В отсутствие кислорода полиэтилен устойчив до 290° С. В пределах 290—350° С он разлагается на низкомолекулярные полимеры типа восков, а выше 350° С продуктами разложения являются низкомолекулярные жидкие вещества и газообразные соединения — бутилен, водород, окись углерода, двуокись углерода, этилен, этан и др. [121]. [c.35]

    Сжатый газ, содержащий водород и углеводороды, осушают пропусканием через окись алюминия или молекулярные сита, охлаждают приблизительно до —70 °С и направляют в демета- низатор. В качестве хладоагентов в различных холодильных циклах системы разделения пирогаза используются комприми-рованные метан, этилен и пропилен. Этилен и пропилен выделяют и очищают путем низкотемпературного фракционирования под давлением. Этан и пропан возвращают в цикл и пиролизуют в специальных печах. Из бутан-бутиленовой фракции методом абсорбции можно извлечь бутадиен. Фракция от С5 и выше, выкипающая до 200°С (т. е. бензиновая фракция), содержит значительные количества ароматических углеводородов Се — Се, которые можно выделить экстракцией (гл. 5). По другой схеме присутствующие диены подвергают селективному гидрированию и полученную фракцию используют как моторное топливо. [c.67]

    В литературе имеются сообщения о новых путях получения полиэтилена при низком давлении, исключающих применение металлоорганических соединений [158]. Катализатором полимеризации в этом случае служит окись хрома, нанесенная на носитель, состоящий из Si02 и АЬОз. Оптимальные условия полимеризации этилена в среде растворителя (пентан, октан) температура 135—190 и давление 35 а/иж в этих условиях этилен полностью превращается в полиэтилен, который имеет средний мол. в. 5000—30 ООО, среднюю плотность 0,952, т. пл. 113—127° и характеризуется высокой механической прочностью и морозоустойчивостью. (Метод Филипнса). [c.180]

    В эти же годы большие усилия ученых и инженеров были направлены на разработку технически совершенных и экономичных методов производства чистых азота и водорода для синтеза аммиака [14—22]. Первые аммиачные заводы работали па азото-водородной смеси, получаемой из полуводяного газа методом конверсии окиси углерода с водяным паром, т. е. фактически сырьем были кокс и каменный уголь. Вскоре после первой мировой войны были разработаны промышленные методы производства водорода из коксового газа глубоким охлаждением его до температуры —200° С. При этом конденсируются все газообразные компоненты коксового газа — этилен, этан, метан, окись углерода, а остающийся нескондепсированным водород промывается жидким азотом для освобождения от следов окиси углерода. Были созданы совершенные электролизеры с униполярными электродами, а также высокопроизводительные электролизеры фильтр-прессного типа с биполярными электродами для электролиза воды, которые нашли широкое применение в Норвегии, Италии и Японии. В небольшом масштабе стал применяться железопаровой способ получения водорода, использовался побочный водород других производств, например производства хлора электролизом раствора поваренной соли. Наконец, был разработан метод производства водорода конверсией метана и углеводородов нефти с водяным паром при атмосферном давлении и под давлением 2—5,1 МПа. Последний метод оказался наиболее экономичным, получил большое распространение после второй мировой войны и начал постепенно вытеснять другие. [c.13]


Смотреть страницы где упоминается термин Окись этилена методы получения: [c.225]    [c.109]    [c.388]    [c.170]    [c.163]    [c.196]    [c.194]    [c.202]    [c.22]    [c.31]    [c.317]   
Неионогенные моющие средства (1965) -- [ c.15 , c.17 , c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен окись

Этилен получение



© 2025 chem21.info Реклама на сайте