Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система холодильных циклов

    Отличие установки НТА (рис. 111.91) от установки НТС (см. рис. III.90) — вместо низкотемпературного сепаратора устанавливается абсорбер. Кроме того, часть стабилизированного конденсата после колонны 9 подается в поток сырого газа перед сепаратором 1. Для схемы (см. рис. III.91) характерно отсутствие сепаратора перед абсорбером и специальной системы десорбции газа. Сепаратором служит как бы сам абсорбер. В качестве тощего абсорбента применяют нестабильный конденсат из емкости 7, охлаждаемый в теплообменнике 6- возможно применение стабилизированного конденсата, получаемого в колонне 9. Так же как в схеме НТС, необходимый для процесса НТА холод производится в начальный период за счет дроссель-эффекта, а затем по Мере падения давления в схему включается внешний холодильный цикл. [c.264]


    Экспериментальные исследования холодильного цикла со смешанным хладоагентом применительно к условиям низкотемпературной переработки были проведены во ВНИИгаз [76]. В процессе исследований определяли дроссель-эффект для различных составов хладоагента, диапазон рабочих давлений в холодильном цикле, возможность подпитки хладоагента смесью легких углеводородов. В качестве хладоагента использовали ширококипящие многокомпонентные смеси, содержащие (в % об.) метана 36,7—51,9 этана 36,5—40,4 пропана 8,1—15,5 изобутана 0,4—0,7 н-бутана 2,9— 7,4. Давление в системе холодильного цикла выбирали, исходя из условия использования установок для промысловой подготовки газа. Поэтому опыты проводили в основном при начальном давлении около 6,0 МПа с понижением его после дросселя до 3,0 МПа. [c.172]

    Другим примером является использование холодильного цикла для высокоэффективного метода нагревания с помощью электрической энергии. Система работает по принципу одноступенчатой холодильной машины. Используется тепло воды Оь отводимой из реки, озера. Электрическая энергия расходуется на движение компрессора. Тепло в количестве Q- -L отдается помещениям через калориферы. Следовательно, при расходе энергии Ь калорифером отдается тепло Q- -L, или гЬ, т. е. значительно больше, чем .При нагревании же с помощью электрических сопротивлений помещениям отдано было бы только I тепла. Такая современная система обогрева имеет то преимущество, что летом ее можно использовать для охлаждения помещений (тогда нагреваться будет вода в реке). [c.262]

    При расчете холодильного цикла определяются следующие параметры удельная холодопроизводительность, количество хладоагента, температура его перед дроссельным устройством, молекулярная масса хладоагента, энергозатраты на компримирование и транспортирование его в системе холодильного цикла. [c.174]

    Система холодильных цикле з [c.177]

    Схема, изображенная на рис. П1.40, предназначена для глубокого извлечения пропана. Особенность схемы — охлаждение газа на I ступени конденсации за счет внешнего пропанового холодильного цикла, а на П ступени — за счет дросселирования конденсата из сепаратора И ступени и части конденсата из сепаратора I ступени. Компримированный до 3,7 МПа нефтяной газ последовательно охлаждается в воздушных холодильниках 2, регенеративных теплообменниках <3 и и пропановом испарителе 5 до —30 °С и частично конденсируется. Образовавшаяся двухфазная система разделяется в сепараторе 6. Газ I ступени сепарации далее охлаждается до —64 °С за счет холода сухого газа, выходящего из сепаратора П ступени 10, в теплообменнике 7, а также конденсата П ступени сепарации и части конденсата I ступени, сдросселированных на дросселях 19 и 20 до давления 0,3 МПа, в теплообменниках 5 и Р. После отдачи холода испарившиеся при дросселировании потоки дожимаются компрессором 12 до давле- [c.185]


    На установках, где реактор работает с замкнутым холодильным циклом и охлаждается с помощью хладагента (аммиак и др.), для предотвращения накопления пропана его выводят из системы, пропуская часть отгона изобутановой колонны через пропановую колонну. [c.139]

    Циклы термодинамические или круговые процессы (13, 14)—совокупность процессов, при завершении которых система возвращается к исходному состоянию. Введены в термодинамику, чтобы в явной форме не рассматривать неизмеряемые термодинамические функции состояния. Расчет баланса тех или иных величин по циклу позволяет находить соотношения между измеряемыми величинами. Фактически представляет собой простейший вариант использования теорем существования различных термодинамических функций. Сейчас этот метод имеет чисто историческое значение. Цикл Борна — Габера (34) цикл Карно (42) термохимические циклы (34) холодильный цикл (44). [c.316]

    Если в качестве вторичного теплоносителя используется холодильный агент, АВО рассчитывают на режим конденсации. В системах воздушного охлаждения вспомогательные холодильные циклы подключаются к АВО в различных комбинациях, но в любом варианте комбинированной схемы холодильный цикл должен рассматриваться как вспомогательный, повышающий эффективность и надежность воздушного охлаждения. --------------------- [c.43]

    Производство холода на любом заданном температурном уровне ниже температуры окружающей среды осуществляется в системах, реализующих тот или иной холодильный цикл. В современных процессах газопереработки используются различные холодильные циклы, обеспечивающие температуры от близких к температуре окружающей среды до температуры жидкого гелия. [c.122]

    На рис. 34 изображена схема процесса ра.зделения га зов, также разработанного фирмой Линде. Этот процесс особенно хорошо подходит для переработки газов крекинга [14]. Вследствие введения добавочного метанового холодильного цикла и использования необходимого для него третьего компрессора этот метод несколько сложнее только что описанного. Однако на такой установке мон по получать отдельные продукты с повышенным выходом. В обоих описанных здесь установках потоки циркулирующего в системе и продуктового этилена совмещены, что отличает их от установок другого типа, где особый этиленовый цикл предусмотрен только для охла- [c.162]

    Узел абсорбции. Опыт эксплуатации установок НТА в США и Канаде показал, что применение пропанового холодильного цикла с изотермой испарения пропана от —30 до —40 °С позволяет при соответствующем расходе абсорбента обеспечить извлечение 40—50% этана, до 95% пропана и около 100% газового бензина при высоких технико-экономических показателях процесса. При этом давление в абсорбере колеблется на разных ГПЗ от 3 до 7 МПа. Оно зависит от многих факторов, и в частности при переработке сухих газов (с низким содержанием углеводородов Сз+высшие) в системе можно поддерживать более низкое давле-. ние, чем при переработке жирных газов. [c.207]

    Для организации заданного теплового режима в трубное пространство тарелок необходимо подавать соответствующие теплоносители — для съема тепла, например, можно использовать искусственный или естественный холод. На Краснодарском нефтегазоперерабатывающем заводе в трубное пространство тарелок абсорбера подавали газовый конденсат — абсорбент, который поступал с различных газоконденсатных месторождений. Летом его охлаждали в системе аммиачного холодильного цикла до 10— 15 °С, зимой конденсат поступал при достаточно низкой температуре и поэтому использовался в качестве хладоагента без предварительного охлаждения (холодильная установка зимой не работала) [42]. [c.397]

    При подборе оборудования с использованием математических моделей и термоэкономических расчетов учитывают взаимное влияние параметров цикла, сред и характеристик узлов холодильной установки. В частности, перепады температур между охлаждающими средами в теплообменных аппаратах весьма существенно влияют на площадь их теплопередающей поверхности и, как следствие этого, на массогабаритные показатели. Параметры цикла холодильной установки также связаны с параметрами теплообменных аппаратов и компрессоров и весьма существенно влияют на массогабаритные показатели и энергетические затраты в системе холодильной установки. [c.225]

    Присутствие этих примесей обусловлено наличием фильтрата в осадке, выгруженном из центрифуг. Хотя содержание фильтрата в осадке не контролируется, его количество можно уменьшить снижением в нем содержания параксилола чему способствует снижение рабочей температуры во 2-й ступени кристаллизации, а также увеличение расхода промывного толуола с учетом чистоты товарного параксилола. Часть фильтрата циркулирует внутри 2-й ступени для снижения содержания осадка кристаллов в суспензии и улучшения управляемости самой ступени. Этот поток не оказывает влияния на работу холодильного цикла и на абсолютное количество осадка, образуемого во 2-й ступени. Но количественное увеличение этого потока внутри системы усложняет сушку осадка и тем самым снижает эффект толу ольной промывки. Фильтрат через перфорированную часть ротора центрифуг обеих ступеней собирается отдельно и совершает циркуляцию в пределах ступени. Это способствует увеличению производительности кристаллизационного узла, так как фильтрат, прошедший через сетку, содержит некоторое количество твердого осадка и, следовательно, общее содержание параксилола в фильтрате через перфорированный ротор больше, чем в чистом фильтрате (на 1-й ступени содержание осадка в фильтрате может достигать 45% и на 2-й ступени — 13%). [c.174]


    Пропановый холодильный цикл в системе установок осушки газа и стабилизации конденсата Оренбургского ГПЗ приведен на рис. У-14. [c.235]

    Что касается противоточного испарения, то в промышленных условиях этот процесс для получения труднолетучего компонента почти не применяется. Такое положение можно объяснить недостаточной изученностью процессов и трудностями, обусловленными созданием Системы, подвода и отвода тепла, обеспечивающей изменение температуры хладоагента и теплоносителя в зависимости от количества переданного тепла. Дело в том, что в промышленных условиях используется в основном паровой холодильный цикл, включающий компрессию пара, его конденсацию и дросселирование, а также изобарическое испарение хладоагента. Поэтому при переменной температуре хладоагента требуется сложная многоступенчатая схема холодильной установки.  [c.250]

    Обратный круговой цикл, представленный на диаграмме (рис. 25-1), осуществим при условии, что энтропия системы остается постоянной. Следовательно, уменьшение энтропии охлаждаемого тела на Оо/Т и, происходящее при испарении рабочего вещества, должно быть равно увеличению энтропии охлаждающей среды на (Оо + <Э1.)/2"к, происходящему при конденсации сжатого пара рабочего вещества. Из этого условия следует, что работа, затрачиваемая при осуществлении теоретического холодильного цикла Карно [c.201]

    В рассмотренной схеме, Таблица 59. Критические условия разложения как и при прямом вымораживании, используется холодильный цикл с низкотемпературной главной системой и высокотемпературной вторичной системой. За счет теплоты образования гидратов в реакторе происходит испарение жидкого пропана. Образующиеся пары пропана, а также некоторое дополнительное количество газообразного пропана для покрытия тепловых утечек в системе реактора сжимаются в главном компрессоре. Большая часть паров, выходящая из компрессора, конденсируется в кон-денсаторе-плавителе, а жидкий пропан, полученный в результате их конденсации и разложения гидратов, возвращается в реактор. Цикл замыкается. [c.461]

    В Западной Европе работают в основном установки газоразделения конденсационного типа с применением охлаждения до минус 160° С при незначительном давлении. Достаточно низкие температуры достигаются за счет аммиачного или пропано( ого холодильного цикла, дроссельного эффекта метана и исходного газа. Для экономии энергии на установках этого типа необходима наиболее полная утилизация тепла конденсации исходного газа и циркулирующих потоков, а также холода отходящих потоков. Однако чем больше развита система рециркуляции тепла и холода, тем сложнее установка и меньше ее гибкость. Такие установки эффективны, сли перерабатывается газ постоянного состава. При колебаниях состава газа работа теплообменной аппаратуры и колонки нарушается. [c.164]

    Наконец, необходимо научиться снимать отсчеты с диаграмм и анализировать ход процесса в заданной координатной системе (например, процесс сушки в координатах I—х, холодильный цикл с диаграмм Г—5 и др.). [c.15]

    Завод но производству этилена является крупным потребителем энергии в виде механической работы (на компримирование газа в технологическом и холодильном циклах) и тенла. В качестве теплоносителя для обеспечения потребности в тепловой энергии и в качестве технологической добавки используется обычно водяной пар. Водяной пар расходуется на разбавление нирогаза в реакторах, на обогрев кипятильников некоторых колонн извлечения и фракционирования, на регенерацию адсорбентов в системе осушки, на подогрев газа в системах гидрирования ацетилена и т. д. [c.114]

    Смесь тяжелых углеводородов и хладоносителя из-за разности удельных весов расслаивается в фазном разделителе 2. Тяжелые углеводороды выводятся из системы для разделения и использования, а нагретый хладоноситель подается самотеком в контактную колонну-теплообменник холодильного цикла 3, в которую подается жидкий хладагент, например пропан. Хладоноситель охлаждается испаряющимся хладагентом и стекает в куб, а пары хладагента поднимаются вверх, отсасываются компрессором 4 холодильного цикла, конденсируются в конденсаторе 5 жидкий хладагент через сборник 6 снова подается в контактный теплообменник 3. [c.142]

    Конденсат из системы глубокого охлаждения дросселируется и поступает в метановую колонну. Верхний продукт колонны С2—Сз после снижения давления также подается в метановую колонну i—С2 (этан 6, рис. 93). Чтобы обеспечить малые потери этилена с метаном, являющимся верхним продуктом колонны i—Сг, колонна орошается флегмой, состоящей в основном из жидкого метана. Давление в колонне поддерживается 1,5—2 ата. Для осуществления процесса деметанизации при низком давлении с малыми потерями этилена в верху колонны должна поддерживаться температура, равная 151° К. Эта температура достигается путем применения каскадного холодильного цикла с метановым холодом на нижней ступени каскада. [c.160]

    Термодинамически более целесообразны схемы, в которых в колонну после предварительного охлаждения подаются обе фазы пирогаза жидкая и паровая. Такие колонны с прямоточным и противо-точным включением конденсаторов холодного орошения приведены на схеме рис. 101. Флегма для орошения колонны 1 образуется в конденсаторе холодного орошения 2. В этой схеме по сравнению со схемой рис. 100 отсутствует подача орошения в виде жидкого метана из метанового холодильного цикла, и поэтому нет смешения технологического и холодильного потоков, что упрощает условия эксплуатации системы извлечения. Размеры колонн в обоих вариантах схемы (рис. 101) всегда больше, чем ректификационной колонны [c.165]

    При небольших тепловых нагрузках, существенной разбросанности объектов охлаждения, а также при непосредственном включении элементов холодильного цикла в схему основного производства, например, при газоразделении, целесообразно использование локальной системы получения холода с непосредственным охлаждением объектов рабочим телом холодильной машины. При этом несколько снижаются энергетические затраты. В холодильных установках, применяемых в химической промышленности, используют почти все типы холодильных машин, но [/аибольшее распространение получили паровые компрессионные и абсорбционные. Как показывает техникоэкономический анализ [1, 8, 11], применение абсорбционных холодильных машин обосновано при использовании вторичных энергетических ресурсов в виде дымовых и отработанных газов, факельных сбросов газа, продуктов технологического производства, отработанного пара низких параметров. В ряде производств экономически выгодно комплексное использование машин обоих типов при создании энерготехнологических схем. [c.173]

    На рис. 33 показана принципиальная технологическая схема установки трехступенчатой НТК с внешним холодильным циклом для разделения природного газа на сухой газ и ШФЛУ. Сырьевой газ разделяется на два потока и охлаждается в рекуперативных теплообменниках /, 2 обратным потоком ухого газа, отводимого с третьей ступени сепарации и с верха цеэтанизатора, и объединенным потоком сконденсировавшихся углеводородов с трех ступеней сепарации. Затем сырьевой по-гок охлаждается в пропановом испарителе 3 и поступает на первую ступень сепарации. Газовая фаза снова охлаждается в холодильнике до образования двухфазной системы и поступает аа вторую ступень сепарации, после чего следует еще од а тупень конденсации и сепарации. Жидкая фаза из всех трех епараторов 4, 5, 6 объединяется и поступает на питание в [c.137]

    Этилен присутствует в газах коксового производства и в газах установок для газификации угля в количестве около 2%. Поскольку в странах с развитой промышленностью, таких, как США и Великобритания, ежегодно подвергают коксованию огромное количество каменрюго угля, общий тоннаж этилена каменноугольного происхождения весьма велик. Однако широкому использованию этого этилена препятствует его малая концентрация в коксовом газе и то обстоятельство, что на каждую тонну образующегося этилена приходится подвергать коксованию около 100 т каменного угля. Это означает, что этилен является побочным продуктом в полном смысле этого слова, экономика получения которого определяется рыночными ценами на основные продукты коксохимического производства. Тем не менее в одном случае выделение этилена из коксового газа бывает всегда выгодно, а именно когда коксовый газ используют для производства чистого водорода или смесей водорода с азотом, необходимых для промышленности синтетического аммиака. В этом случае [27] коксовый газ охлаждают в три ступени до —200° либо по системе Линде—Бронна, где во внешнем холодильном цикле используют жидкие аммиак и азот, либо по системе Клода, где газ после выхода из последнего холодильника расширяется в детандере, производя внешнюю работу. В холодильнике первой ступени конденсируется небольшое количество высших углеводородов. В холодильнике второй ступени улавливается весь этилен, концентрация которого в смеси с другими углеводородами, сконденсированными в этом холодильнике, равняется 30%. Состав этой фракции (по Руеманну) следующий (а процентах)  [c.124]

    По мере увеличения потребности в углеводородном сырье (этане и сжиженных газах) совершенствовались схемы маслоабсорбционных установок в 50—60-х годах широкое распространение получили схемы низкотемпературной абсорбции (НТА), где для охлаждения технологических потоков наряду с водяными (воздушными) холодильниками стали применять специальные холодильные системы (такие же, как в схемах НТК). Технологическая схема низкотемпературной абсорбции состоит как бы из двух частей блока предварительного отбензннивания исходного газа, представляющего собой узел НТК, и блока низкотемпературной абсорбции,, где происходит доизвлечение углеводородов из газа, прошедшего через блок НТК. Такое комбинирование процессов делает схему низкотемпературной абсорбции (НТА) достаточно гибкой и универсальной — она может быть использована для извлечения этана и более тяжелых углеводородов из газов различного состава. Применение схем НТА позволяет обеспечить высокое извлечение пропана из нефтяных газов при сравнительно умеренном охлаждении технологических потоков на установках НТА для извлечения 90—95% пропана достаточно иметь холодильный цикл с изотермой — 30- —38 °С, на установках НТК для этого требуется изотерма -80- —85 °С. [c.205]

    Поступающий на завод нефтяной газ компримировали до 1,6 МПа и с температурой 25 °С направляли в промышленный и опытный абсорберы. В эти аппараты подавали два абсорбента на разные тарелки — дизельное топливо и нестабильный газовый конденсат. Съем тепла в опытном абсорбере производили за счет подачи в трубчато-решетчатые тарелки газового конденсата, предварительно охлажденного в системе аммиачного холодильного цикла. В результате исследований было установлено, что эффективность абсорбера с трубчато-решетчатыми тарелками значительно выше эффективности промышленного абсорбера. Извлечение пропана в промышленном абсорбере при максимально достигнутой нагрузке по газу и удельном расходе абсорбента 2,2— 3 л/м составляло 65% от потенциального содержания в исходном газе, что в 1,3 раза меньше, чем в аппарате с трубчато-решетча-тымн тарелками (на этом заводе в течение многих лет эксплуатировался промышленный абсорбер с трубчато-решетчатыми тарелками диаметром 2,4 м). [c.217]

    Регенеративная система теплообмена IV ступени (II основной) Холодильный цикл IV ступени Дроссельные устройства внутрен-негв холодильного цикла [c.339]

    Холодопроизводительность холодильной системы, работающей на К401А, сопоставима с холодопроизводительностью систем на К12 при температурах кипения выще -25 °С. Зависимость давления насыщения от температуры представлена на рис. 7. В табл. 8 приведены результаты сравнения теоретических холодильных циклов при работе на К12 и К401А. [c.38]

    Отметим, что охлаждение исходной парогазовой смеси в аппарате И возможно водой из градирни, поскольку температура г азового потока /, >/ . В частности, при снижении температуры в точке, до О °С значения с/о н г, увеличиваются на 16 %. Ограничением, не позволившим в данном случае воспользоваться регенерацией холода, является условие применения централизованной системы охлаждения. Локальные холодильные установки с непосредственным охлаждением технологических аппаратов кипящим рабочим телом по шоляют не только использовать низкотемпературные технологические потоки для улучшения показателей холодильного цикла, но заметно повысить наиболее [c.357]

    В контуре конденсации толуола (подсистема /) потери эксергии ( 31 %) обусловлены необратимьш теплообменом в технологических аппаратах / и // (см. рис. 12.1), в которых низкие значения коэффициентов теплоотдачи со стороны газовой фазы вынуждают поддерживать большие температурные напоры. Кроме того, охлаждение исходной смеси низкотемпературным газовым потоком, выходяшим из конденсатора толуола, по существу означает уничтожение эксергии этого потока. Целесообразнее применить охлаждение водой, а имеющийся запас холода использовать для других технологических целей, где реализуются процессы при пониженных температурах. При локальной системе хладоснабжения возможна регенерация холода технологических потоков в холодильном цикле для переохлаждения жидкого аммиака перед дросселированием (точка 3 нг рис. 12.2), при этом снижаются затраты энергии в холодильной машине. [c.375]

    Описание процесса. Основой низкотемпературной очистки газа является сложная система охлаждения и теплообмена. Многочисленные используемые в промышленных процессах схемы различаются главным образом методами охлаждения, устройством и конструкциями теплообменпого оборудования. В главном холодильном цикле используются или специальные хладагенты, например азот, или очищаемый газ. Применение азота в холодильном цикле дает важное преимущество, так как позволяет получать очищенный газ, выходящий с установки под высоким давлением. В литературе описаны различные варианты и видоизменения основной схемы процесса [23-27]. [c.363]

    По схеме, изображенной на рис. 14.7, исходный газ с высоким содержанием водорода, обычно под давлением 10,5—12 ат, поело предварительного охлаждения обратными газами поступает в низкотемпературную секцию. Здесь газ обезвоживается и дополнительно ох.г[а-ждается до —46 С прп помощи обычного аммиачного холодильного цикла. Азот высокой чистоты, получаемый на установке ректификации воздуха, сжимают приблизительно до 210 ат и вместе с исходным газом охлаждают до —46° С. Из схемы рис. 14.7 видно, что охлажденный до —46° С газ проходит сначала через три теплообменника, в которых охлаждается выходящими с установки потоками, а именно испаряющимся метаном, окисью углерода и азотом с низа колонны промывки жидким азотом и азото-водородной смесью, отбираемой с верха колонны. В первом теплообменнике, где температура газа снижается приблизительно до —101° С, конденсируются небольшие количества жидких углеводородов, которые периодически выводятся из системы. Во втором теплообменнике температура газа донолнительно снижается до —146° С. Это приводит к конденсации так называемой этиленовой фракции, в которой присутствуют большая часть этилена, содержавшегося в исходном газе, остаточные количества более тяжелых углеводородов и небольшое количество метана. Этиленовую фракцию испаряют и используют для охлаждения части поступающего азота. В третьем теплообменпике газ охлаждается приблизительно до —179° С в результате испарения метана и смеси окиси углерода с азотом. При этом конденсируются дополнительные количества метана и этилена. [c.363]

    Для охлаждения газов применяют различные холодильные системы аммиачные, способные охлаждать (до—50° С), этаноаммиачные с двумя холодильными циклами, при которых может быть достигнута температура —100° С с дроссельным охлаждением, при котором достигаются еще более низкие температуры (эффект дросселирования основан на способности сжатых газов сильно охлаждаться при быстром снижении давления). [c.218]

    Процессы разделения газов по абсорбционно-ректификацион-цому и конденсационно-ректификационному методам являются весьма энергоемкими. Особенно большие затраты имеют место для создания холода, необходимого для первичного сжижения разделяемых газов и для конденсации орошения в каждой колонне. Большие затраты энергии имеют место в этиленовой к пропиленовой колоннах, работающих при низких температурах и больших флегмовых числах. Используются аммиачный, пропан-пропиленовый и этан-этиленовый холодильные циклы. В некоторых системах применяется также метановое охлаждение. Холод [c.70]

    Сжатый газ, содержащий водород и углеводороды, осушают пропусканием через окись алюминия или молекулярные сита, охлаждают приблизительно до —70 °С и направляют в демета- низатор. В качестве хладоагентов в различных холодильных циклах системы разделения пирогаза используются комприми-рованные метан, этилен и пропилен. Этилен и пропилен выделяют и очищают путем низкотемпературного фракционирования под давлением. Этан и пропан возвращают в цикл и пиролизуют в специальных печах. Из бутан-бутиленовой фракции методом абсорбции можно извлечь бутадиен. Фракция от С5 и выше, выкипающая до 200°С (т. е. бензиновая фракция), содержит значительные количества ароматических углеводородов Се — Се, которые можно выделить экстракцией (гл. 5). По другой схеме присутствующие диены подвергают селективному гидрированию и полученную фракцию используют как моторное топливо. [c.67]

    Хотя были проведены некоторые исследования по применению хлорфторуглеводородов в абсорбционных холодильных циклах, на практике эти соединения используются только в па-рокомпрессорнЫх агрегатах. Холодильный эффект в системе с компрессионным циклом получается за счет испарения жидкого хладоагента в стороне низкого давления замкнутого цикла. Далее пары механически засасываются компрессором и возвращаются в сторону высокого давления. Этот процесс лучше всего объяснить на примере работы домашнего холодильника. [c.671]

    В этом процессе воздух, сжатый примерно до давления 6 ати и охлажденный в теплообменниках, сжижается при низкой температуре, достигаемой в каскадной холодильной системе. В каскадной холодильной машине применяются последовательно соединенные холодильные циклы, работающие со все более низ-кокинящими компонентами. Эти цикуты связаны между собой гаким образом, что в аждом последующем цикле отводится тепло от конденсатора предыдущего цикла. [c.403]

    Необходимый для выделения фракций холод обеспечивается зотным и этацовым холодильными циклами, а также системой аммиачного охлаждения. [c.269]

    Для кондиционирования воздуха с использованием солнечной энергии разработан холодильный цикл, базирующийся на цикле Ранкина. Такая система показана на рис. 2Л4. Под действием тепловой энергии, полученной солнечными батареями, рабочая жидкость в газогенераторе переходит в высокотемпературный пар высокого давления, который поступает в турбину, где энергия пара преобразуется в механическую энергию. Этот цикл в основном подобен бинарному циклу с использованием геотермальной воды, где турбина приводит в действие компрессор холодильного цикла. В холодильном цикле, являющемся обратным циклу Ранкина, холод образуется в испаритела Холодильный цикл отличается тем, что, когда температура источника тепла понижается и цикл Ранкина использовать невозможно, можно приводить его в действие, подсоединяя электродвигатель. [c.72]

    Обычно конечная температура предварительного охлаждения пирогаза находится в пределах от —30 до —43° С и обусловливается применением аммиачных или пропан-пропиленовых холодильных циклов. При этом в большинстве случаев в системе иредваритель- ного охлаждения выделяется основное количество углеводородов Сз и выше. [c.158]


Смотреть страницы где упоминается термин Система холодильных циклов: [c.78]    [c.223]    [c.352]    [c.297]    [c.96]   
Смотреть главы в:

Процессы переработки нефти -> Система холодильных циклов




ПОИСК







© 2025 chem21.info Реклама на сайте