Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен мешалками

    Экспериментальные работы, проведенные на модельном аппарате объемом 0,1ы с теплообменной мешалкой из 6 груб на водных растворах глицерина, поливинилового спирта и дисперсии винил-ацетата с этиленом (вязкость до 10 н.сек/ы ) позволили определить зависимость теплообмена к вращающейся поверхности труб мешалки (рис,2) от критерия Рейнольдса, которая в диапазоне 10 4 Ке Ю описывается уравнением [c.197]


Рис.З. Зависимость / (Ы для трубчатой теплообменной мешалки Рис.З. Зависимость / (Ы для <a href="/info/1007411">трубчатой теплообменной</a> мешалки
    Для сульфирования ароматических соединений применяют главным образом концентрированную серную кислоту, олеум и серный ангидрид. Сульфирование ароматических соединений проводят в аппаратах периодического действия с мешалками и охлаждающими рубашками, змеевиками или с дополнительной выносной теплообменной аппаратурой. В многотоннажных производствах процессы сульфирования проводят непрерывна в каскаде реакторов с мешалками. В реакторах поддерживают различную температуру в соответствии с изменением концентрации и готовности сульфирующего агента. [c.109]

    Теплообмен можно осуществить при постоянных коэффициенте теплопередачи и температуре теплового источника. Так, например, в реакторах с паровой рубашкой, оборудованных мешалками (рис. И 1-2,6), на величину коэффициента теплопередачи влияет главным образом скорость перемешивания, что дает возможность поддерживать указанный коэ< к )ициент постоянным. [c.96]

    К рытия теплопроводны. Эмалированную аппаратуру применяют для обработки агрессивных веществ, а также для процессов, требующих особой чистоты продукта. Эмалированные теплообменные элементы незаменимы при работе с особо агрессивными средами, в которых большинство металлов подвергается коррозионному разрушению. Недостаток эмалевого покрытия — его непрочность. Повреждение в одном месте приводит к быстрому разрушению эмали на всей поверхности. Ремонтировать поврежденную эмалированную поверхность не всегда можно, поэтому приходится заменять весь аппарат, в связи с чем не всегда целесообразно применять большие эмалированные аппараты. В настоящее время в химической промышленности применяют емкостные эмалированные аппараты, в том числе и эмалированные реакторы с мешалками, колонны, теплообменники, трубопроводную арматуру, суши. 1ки и другие виды оборудования. [c.28]

    В качестве теплообменных элементов для аппаратов с мешалками применяют рубашки или змеевики. Рубашка конструктивно более проста. Аппараты с рубашкой легче очищать, однако площадь теплообмена рубашки ограничена поверхностью аппарата, а так [c.223]


    Площадь теплообменной поверхности реактора с механическим перемешиванием газа в жидкости рассчитывается по формуле (9.39) с учетом теплового потока, определяемого по формулам (9.62) или (9.66). Коэффициент теплоотдачи а от газожидкостной смеси, перемешиваемой шестилопастной турбинной мешалкой, к стенке сосуда, заключенного в рубашку, можно рассчитать по уравнению [c.272]

    Для проведения непрерывных жидкофазных процессов обычно применяют либо емкостные аппараты с мешалкой, либо аппараты колонного типа, снабженные (и те и другие), если надо, теплообменными устройствами. В первом варианте пока используют только суспендированный катализатор, во втором можно применять и гранулированный неподвижный катализатор. [c.274]

    Особый интерес с точки зрения экономики и простоты управления представляют реакторы непрерывного действия (проточные реакторы). Схема типового проточного реактора с мешалкой и теплообменным устройствами показана на рис. П-8. [c.65]

    В термостате / с электроподогревателем 2 и мешалкой 3 помещена емкость 4 с нормальным гексаном. Пары, образующиеся при кипении гексана, через вентиль 5 тонкой регулировки поступают к соплу 6, находящемуся в прозрачном сосуде 7 с водой. При всплывании пузырька в результате разности температур воды и пара происходит теплообмен, пар конденсируется и размеры пузырька уменьшаются. В сосуд 7 помещена шкала 8, позволяющая с помощью киносъемки определить изменение размеров пузырька во времени. Время от момента появления пузырька в сопле до отрыва составляет примерно 0,015—0,03 с. Во избежание конденсации в момент формирования пузырька пар подавался к соплу перегретым на 1—5 С, [c.75]

    В работе [26] изучалось влияние пристенных перегородок на теплообмен в аппаратах с греющей рубашкой. Аппарат диаметром 500 мм с выпуклым днищем и шестилопастной турбинной мешалкой был оборудован вертикальными перегородками (рис. 19). [c.51]

    Авторы объясняют это следующим образом. Для аппаратов с мешалками критическое значение числа Рейнольдса составляет примерно 20, однако развитое турбулентное движение возникает лишь при Ке 10 , и, следовательно, при Ке 400 преобладает ламинарный характер течения перемешиваемой жидкости. Те же авторы исследовали теплообмен и в аппаратах с перегородками при 4-Ш Не З-10 , при этом были получены более высокие значения коэффициентов теплоотдачи [c.51]

    В работе [31] рассмотрен теплообмен в аппаратах диаметром 300 и 600 мм с вертикальными перегородками и шестилопастными турбинными мешалками. В ап- [c.51]

    В работе (26] изучался теплообмен в аппарате диаметром 1515 мм без перегородок с выпуклым днищем. По результатам,..полученным при исследовании пропеллерной мешалки диаметром 60 мм (угол наклона лопастей 45°), расположенной в середине аппарата, была выведена зависимость [c.53]

    Юл, Водник [26] изучали теплообмен при перемешивании жидкости якорными мешалками в аппарате с выпуклым днищем. [c.54]

    Механический агитатор емкостью 100 (рис. 71)— стальной цилиндр 2, футерованный кислотоупорным материалом. Конический диффузор 3 изготовлен из углеродистой стали, его повер.х-ность гуммирована. Диффузор предназначен для создания направленного движения перемешиваемого раствора. При помощи четырех штанг 7 его крепят по центру корпуса к несущим поверхностям. Для подвода или отвода тепла из зоны реакции внутри аппарата установлены спиральные теплообменные элементы 6, конструкция установки и крепления которых позволяют быстро осуществить замену в случае их износа или повреждения. При эксплуатации такого реактора, используемого, например, для выщелачивания, наиболее быстро изнашиваются лопасти мешалки и диффузор. Срок их службы 5— [c.201]

    Эти реакторы представляют собой сосуды, снабженные перемешивающими устройствами (мешалками или насосами). Как правило, перемешивание осуществляется настолько интенсивно, что обеспечивает равномерность состава и температуры смеси в объеме реактора. В тех случаях, когда процесс сопровождается значительным тепловым эффектом, реакторы снабжают теплообменным устройством рубашкой, окружающей стенки аппарата, внутренними змеевиками или внешним теплообменником. Это позволяет поддерживать определенную, наиболее благоприятную температуру реакционной смеси. На рис. 3 и 4 изображены типичные реакторы полного смешения. [c.24]

    Во многих случаях поток из одной секции попадает в другую, не подвергаясь никаким преобразованиям. Такая картина часто наблюдается в многоступенчатых реакторах с мешалкой или псевдоожиженным слоем катализатора, а также в комбинированных реакторах с неподвижным слоем катализатора, состоящих из адиабатических секций и секций с внутренним теплообменом. [c.52]

    Для перемешивания вязких жидкостей и пастообразных материалов применяют так называемые якорные мешалки с лопастями, изогнутыми по форме стенок и днища сосуда (рис. 10-11). Якорные мешалки очищают стенки аппаратов от налипающего на них материала, благодаря чему улучшается теплообмен и предотвращаются местные перегревы перемешиваемых веществ. [c.361]

    Недостатки непрерывных реакторов с мешалками, основные из которых — громоздкость и большой расход электроэнергии на перемешивание — требовали создания непрерывно действующих реакторов, работающих по принципу идеального вытеснения. Этот принцип может быть осуществлен, если выполнить аппарат в виде трубы достаточной длины. Теплообмен в такой трубе можно осуществить достаточно просто, если ее снабдить рубашкой. Сложность применения таких аппаратов определяется небольшими скоростями реакций в жидкой фазе, что требует создания реакционной зоны очень большой длины для достижения необходимой конверсии. Достаточно сказать, что непрерывно действующий проточный реактор для гидролиза дихлорэтана имеет длину труб порядка 1 км. Большая длина реактора необходима для [c.251]


    Для осуществления химической реакции в изотермических условиях необходимо в аппарате обеспечить интенсивное перемешивание и высокоэффективный теплообмен. В реакторах для таких процессов обычно используют псевдоожиженные слои катализатора или теплоносителя, применяют различные смесительные устройства (мешалки) и т.п. [c.637]

    Теплообменные аппараты с механическими мешалками широко распространены в химической технологии. Значения коэффициентов теплоотдачи в них зависят от типа теплообменного устройства (рубашки, змеевики и др.), конструкции аппарата (с внутренними отражательными перегородками и без них), конструкции мешалки и физических свойств перемешиваемой среды. [c.285]

    Выполнение работы. Тепловую постоянную калориметра вычислить по уравнению (III.8), учитывая массы (взвесить) и теплоемкости жидкости и соприкасающихся с ней частей прибора, участвующих в теплообмене стакана, мешалки, термометра, ампулы. Удельные теплоемкости (Дж/г-град) Си — 0,39, стекла — 0,79, воды и разбавленных растворов — 4,1. [c.40]

    В промышленности процессы нитрования, в зависимости от объема производства, ведут периодическими или непрерывными методами, как правило, с использованием нитрующих смесей. При периодическом методе применяют стальные котлы — нитраторы — с большой поверхностью теплообмена в виде рубашек, змеевиков или полых цилиндров, в которые подается вода или холодильный рассол (рис. 13). Нитратор обязательно снабжается хорошо работающей мешалкой, термопарой для непрерывной регистрации температуры и автоматическим устройством, закрывающим подачу нитрующего агента при прекращении размешивания массы или ее перегреве. Особенное значение имеет эффективный массо- и теплообмен, так как реакционная масса чаще всего состоит из двух слоев — кислотного и органического. Добавляемая азотная кислота распределяется между этими слоями и большей частью находится [c.88]

    Для случаев, когда теплообмен происходит через поверхность теплопередачи, наиболее часто применяют реактор, представленный на рис. 111-1. Он представляет собой котел, снабженный мешалкой, рубашкой и внутренними змеевиками (поверхности теплопередачи могут быть и другой формы). [c.46]

    Мешалка — пропеллерная или эвольвентная (частота вращения 80— 100 об/мин), сообщающая массе кроме кругового и поступательное движение снизу вверх. Вода подается в нижнюю часть змеевиков и выводится сверху. Направление движения воды противоположно направлению вращения мешалки. На 1 м полезного объема чана приходится около,3 м теплообменной поверхности змеевиков. В летнее время, когда температура воды выше, к заторному чану подключают выносной холодильник типа труба в трубе , через который сусло прокачивают центробежным насосом. [c.192]

    И внутренних устройств, номинального объема аппарата (м ), условного давления (МПа) и обозначения гуммировочного покрытия (Г). В конце индекса аппарата указывается трехзначный номер модели, который присваивается на заводе-изготовителе и в опросном листе не указывается. Например 0091-2-0,6 Г-ХХХ, где О — аппарат с эллиптическими днищем и съемной крышкой (или 8 — аппарат с плоскими днищем и съемной крышкой) О — без теплообменных устройств 9 — с опусками-отражателями 1 — с трехлопастной мешалкой 2 — номинальный объем (м ) 0,6 — условное давление в корпусе (МПа) (или О — для аппаратов, работающих при [c.135]

    В отдельных случаях в теплообменных аппаратах используются мешалки, скребки, питатели, шлюзовые затворы и другие устройства. [c.129]

    Промьшгленные установки сернокислотного С — алкилирова — ния. На отечественных установках сернокислотного С — алкилиро — вания применяются реакторы двух типов, отличающиеся способом от вода выделяющегося тепла — охлаждением хладоагентом (аммиаком или пропаном) через теплообменную поверхность и охлаждением за счет испарения избыточного изобутана. В первом случае в а/килаторе-контакторе вертикального или горизонтального типа, с1[абженном мощной мешалкой, имеются охлаждающие трубы, в которых хладоагент испаряется, пары которого направляют затем в холодильную установку, где они снова превращаются в жидкость. [c.144]

    Рассматриваются устройство, приемы и методы монтажа насосов, аппаратов для раз деления суспензий и очистки газов, сушильных установок, аппаратов колоппого типа, оборудования для перемещения и сжатия газов, дробильио-размольного оборудования, теплообменных аппаратов и печей, аппаратов с мешалками, реакторов каталитически.ч процессов, аппаратуры высокого давления, резервуаров и газгольдеров. [c.2]

    Чилтон, Дрю и Джебенс [26] детально изучили теплообмен в аппарате с греющей рубашкой и лопастной мешалкой (рис. 20). [c.54]

    Во всех химических реакторах имеют место определенные физические процессы, с помощью которых создаются оптимальные условия проведения химического процесса. Для осуществления физических этапов процесса реакторы имеют в своей структуре простые аппараты или элементы ап аратов (мешалки, теплообмен-никп и т. д.). Таким образом, химические реакторы можно рассматривать как комплексные аппараты, состоящие из определенных сочетании простых аппаратов или элементов аппаратов, большинство из которых используется для проведения физических этапов [c.26]

    В смесителях механическое воздействие сводится к перемешиванию жидкости в баке вращением крыльчатки или шнека, которые обычно расположены в центре бака. Для этой цели используются также мешалки в виде якоря, турбины и спиральные скребки. Теплообменной поверхностью может быть внутренняя поверхность бака, а второй теплоноситель может омывать наружный цилиндр или циркулировать в приваренных к наружной поверхности бака трубах. Иногда теплообменной поверхностью могут служить змеевики, ряд или пучок труб и плоские пластины, образующие каналы, размещенные по периметру бака. Изредка для этой цели служит сама мешалка. Второй теплоноситель в этом случае протекает через каналы в мешалке, что вызывает некоторые трудности с уплотнениями на входиы-х и выходных патрубках вращающейся мешалки. [c.8]

    Для проведения реакций с большим тепловым эффектом используют аппараты с внутренними теплообменными элементами большой поверхности. Примером может служить реактор с пучком двойных теплообменных труб для алкилирования углеводородов, в частности для получения изооктана из изобутана и бутилена. В реакторе циркулирует эмульсия смеси углеводородов с серной кислотой. Реактор (рис. 4.6) имеет вертикальный цилиндрический корпус 6, рассчитанный на давление 1 МПа, внутри которого для отвода теплоты реакции расположен пучок 8 двойных теплообменных труб (трубок Фильда), окруженный кожухом 7, играющим роль направляющего диффузора. В нижней суженной части кя куха помещено колесо 11 осевого насоса (винтовая мешалка), обеспечивающее циркуляцию жидкости, перемешивание и обтекание теплообменной поверхности. Вал колеса выведен наружу через двойное торцовое уплотнение, привод расположен внизу. Вращение жидкости предотвращается продольными ребрами. Для подвода хладагента в верхней части расположены две распределительные камеры с трубными решетками 2 и 4. Верхние концы наружных теплообменных труб, заглушенных снизу, ра.звальцо-ваны в трубной решетке 4, верхние концы внутренних труб закреплены в решетке 2. Нижняя решетка 9 служит для крепления шпильками нижних концов теплообменных труб, чтобы обеспечить жесткость трубного пучка. Концы внутренних труб снабж ны продольными ребрами. [c.250]

    Переход от периодического процесса смешения в емкости с мешалкой к непрерывному процессу с использованием статического смесителя-реактора позволяет повысить безопасность производства, существенно уменьшить габаритные размеры реактора и снизить потребление энергии. На рис. XVII-10 смеситель-реактор показан в момент установки статического смесителя. Статические смесители в таких реакторах играют роль теплообменных поверхностей и выполнены из труб, внутри которых циркулирует теплоноситель. Подобным образом удается реализовать реакторы вытеснения с заранее заданным профилем температуры по длине аппарата. [c.455]

    На рис. ХХ1У-4 изображен горизонтальный реактор (контактор) сернокислотного алкилирования. Исходное сырье и кислота подаются в зону наиболее интенсивного смешения на вход пропеллерной мешалки 5. Далее смесь сырья и кислоты поступает в кольцевое пространство между корпусом 1 и циркуляционной трубой 2, циркулируя по замкнутому контуру в трубчатом пучке, как это показано стрелками на рисунке. Для отвода тепла, выделяющегося при экзотермической реакции, внутри циркуляционной трубы размещается развитая поверхность теплообмена с и-образными теплообменными трубками 4. Охлаждающим агентом являются освобожденные от кислоты испаряющиеся продукты реакции. Подобные контакторы выполняются также и в виде вертикальных аппаратов с теплообменной поверхностью, выполненной из двойных трубок (свечи Фильда). Хладагентом в этом случае служит испаряющийся аммиак или пропан. [c.638]

    Для осуществления химической реакции в изотермических условиях требуется обеспечить интенсивное иеремешивание и эффективный теплообмен в реакторах длн таких процессов обычно применяют смесительные устройства (мешалки) различных конструкций. П))иближаются к изотермическим условиям реакционные аппараты [c.622]

    Температурный ход в начальном и заключительном периодах характеризует процесс выравнивания температур калориметрической системы и внешней среды. На этот процесс влияет разность температур калориметрической системы и внешней среды, работа мешалки, немгновенное изменение температуры всей системы вследствие реакции и т. д., поэтому измеренная разность температур требует введения поправки на теплообмен, которую находят графическим методом. С этой целью через точки начального и заключительного периодов проводят прямые линии (рис. 2.2), продолжая их на область главного периода. Соединяют прямой последнюю по времени точку 2, лежащую на линии начального периода, с первой по времени точкой 3, лежащей на линии заключительного периода отрезок 2—3 делят пополам. Через середину отрезка проводят прямую, параллельную оси ординат, до пересе- [c.15]

Рис. 11-8. Схема типового проточного реактора с мешалкой и теплообменным устроЯствои. Рис. 11-8. <a href="/info/835629">Схема типового</a> <a href="/info/50987">проточного реактора</a> с мешалкой и теплообменным устроЯствои.

Смотреть страницы где упоминается термин Теплообмен мешалками: [c.198]    [c.28]    [c.472]    [c.154]    [c.56]    [c.45]    [c.25]    [c.14]    [c.154]    [c.17]    [c.189]    [c.497]   
Перемешивание в химической промышленности (1963) -- [ c.170 , c.179 ]




ПОИСК







© 2025 chem21.info Реклама на сайте