Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды алифатические, алкилирование

    Как правило, реакцию хлорирования алифатических углеводородов проводят в жидкой фазе, пропуская через смесь жидких углеводородов газообразный хлор. Хлор растворяется в жидкости и вступает в реакцию. Образующийся при этом хлороводород отводят из реактора и обрабатывают водой, в результате чего образуется хлороводородная кислота. Хлорированную реакционную массу после соответствующей подготовки подают на алкилирование. В промышленности применяют фотохимический и термический методы хлорирования алканов. Фотохимическое хлорирование жидких алканов проводят в непрерывном режиме в аппаратах колонного типа, футерованных внутри свинцом или винипластом и оснащенных осветительными кварцевыми лампами. Ртутные кварцевые лампы в защищенных трубках помещают внутрь колонны через специальные штуцеры и располагают внутри по всей высоте. Такое расположение ламп создает равномерное освещение всей реакционной массы, благодаря чему достигается высокая скорость реакции с максимальным использованием хлора. [c.46]


    Алкилирование. Алифатические углеводороды с разветвленной цепью присоединяются к олефинам под действием изомеризующих агентов. Полученные таким способом бензины часто называют алкили-рованными (Ипатьев, 1934 г.). [c.91]

    Приходится подчеркнуть, что реакция Густавсона-Фриделя-Крафтса пригодна только для алкилирования ароматических углеводородов. Ее нельзя применить ни для синтеза углеводородов алифатического ряда, ни для арилирования колец бензола. Она очень подходит для получения ди- и трифенил-нро-изводных метана  [c.153]

    Крек ИНГ алифатической боковой цепи. При термическом крекинге алкилированных ароматических углеводородов в отсутствии активных катализаторов происходит интенсивное расщепление боковых цепей, первичных и вторичных алкильных групп, в то время как третичные алкильные группы большей частью деалкилируются. Добрянский и сотрудники [8] нагревали этил-, изопропил-, и-бутил и третичный бутилбензол от 600 до 650° С и, основываясь на составе полученных продуктов, сформулировали следующие правила, применимые к общему случаю термического разложения алкилированных ароматических углеводородов, [c.106]

    Окисление углеводородов является одним из основных направлений современного нефтехимического синтеза [1, 2], роль которого в развитии органической химии трудно переоценить. В настоящее время в промышленности осуществляется каталитическое жидкофазное окисление высших парафиновых углеводородов в высшие алифатические спирты и кислоты [3]. В последние годы большой интерес проявляют исследователи к жидкофазному автоокислению углеводородов кислородом воздуха в гидроперекиси При этом особое внимание привлекает автоокисление алкилароматических углеводородов и некоторых их производных в гидроперекиси. Это объясняется легкостью синтеза алкилароматических углеводородов на основе реакции алкилирования, как показано в главе И, легкостью окисления многих из них в гидроперекиси и широким применением последних в качестве инициаторов процессов полимеризации и исходного сырья в производстве мономеров для получения синтетических каучуков, пластических масс, синтетических волокон и других продуктов, важных для народного хозяйства. [c.244]

    По сравнению с газообразными олефинами жидкие олефины еш е пе находят широкого применения в химической промышленности. Их используют для производства синтетических смазок, присадок, снижающих температуру застывания, в качестве компонентов алкилирования ароматических углеводородов и фенолов, а в последнее время все в больших масштабах как исходный материал для производства высших алифатических спиртов гидроформилированием. [c.41]


    Алкилирование метановых углеводородов изостроения олефинами дает возможность получать алифатические углеводороды заданной структуры, алкилирование бензола — соответствуюш ив алкилбензолы. [c.11]

    Индуцированное термическое алкилирование. Термическое алкилирование парафиновых углеводородов протекает при более мягких условиях, если к реакционной смеси парафина с олефином добавить небольшое количество (1—3% от веса суммарного сырья) алифатического галоидо- или нитропро-изводного [26]. В этом случае алкилирование протекает прп 300—400° п давлении 210 ат и выше. Образуются примерно такие же продукты, как получаемые при чисто термическом алкилировании. [c.190]

    Полистиролы, алкилированные алифатическими углеводородами, содержащими 16—20 атомов углерода. ........ ...... [c.342]

    Чрезвычайно нежелательным в процессе алкилирования является процесс смолообразования. Накопление смол в реакционной массе ухудшает качество продукта. Адсорбирующиеся на катализаторе смолы дезактивируют его. Смолы образуются в результате реакций переноса водорода между углеводородами (см. стр. 37). Известно, что олефи-ны могут одновременно действовать как доноры, так и акцепторы водорода, превращаясь при этом в парафины и соединения с высокой степенью ненасыщенности - кокс. Гидридный перенос приводит к возникновению ненасыщенных алифатических молекул, в этом случае одно- [c.39]

    Комплексные металлорганические соединения используются не только как катализаторы полимеризации олефинов, диеновых углеводородов и других органических мономеров. Они являются также катализаторами димеризации, олигомеризации и циклизации различных углеводородов. В последние годы появились сообщения об использовании этих соединений в качестве катализаторов гидрирования, изомеризации и алкилирования многих алифатических и ароматических соединений. Известны работы как по применению этих комплексов или отдельных их компонентов при получении карбонилов металлов и я-комплексов переходных металлов, так и по химической фиксации молекулярного азота. Все опубликованные работы представляют значительный интерес и заслуживают специального рассмотрения. [c.175]

    Алкилирование ароматических и алифатических углеводородов олефинами при 300—400° под давлением ускоряется органическими галоидными соединениями (Например, гексахлорбензолом, хлористым бензилом) или нитрометаном [71, 72]. [c.155]

    Большое значение имеет процесс алкилирования углеводородов. При помощи алкилирования изобутана бутиленом получают высокооктановый компонент бензинов — изооктан. Процесс протекает при О—10°С в присутствии крепкой серной кислоты в качестве катализатора. Над плавиковой кислотой изоалканы алки-лируются пропиленом, бутиленами, амиленами. Реакция алкилирования экзотермична. На 1 кг бутиленов выделяется 330 ккал тепла. Продолжительность реакции 5—30 мин. Для алкилирования ароматических колец алифатическими радикалами в качестве катализаторов применяют хлористый алюминий, серную и фосфорную кислоты, смеси фтористого бора и фтористого водорода и др. Реакция протекает при 30—45°С [c.16]

    При температуре 725—825° выхода оставались довольно постоянными. Единственное изменение, имевшее место в результате дальнейшего повышения температуры, заключалось в постепенном исчезновении алифатических углеводородов и в отщеплении боковых цепей от алкилированных ароматических углеводородов. [c.184]

    Разработанной в 1932 г. Уитмором [74] теорией карбониевого иопа можно однозначно объяснить протекание изомеризации двойной связи, сопровождающее различные реакции 01са подробнее будет изложена ииже. Много валспых реакций алифатических углеводородов, например алкилирование, структурная изомеризация, полимеризация и другие, ыо/кпо однозначно объяснить этой теорией. [c.682]

    Таким образом, из двух алифатических углеводородов при алкилировании получается сложная смесь парафинов. Сначала следует разобрать механизм образования октанов, получающихся при алкилировании к-буте-нами. Отсутствие в продуктах каталитического алкилирования изобутапа бутеном теоретически ожидаемых октанов можно было бы прежде всего объяснить тем, что они образуются вначале, но затем изомеризуются под действием 98%-пой серной кислоты, применяющейся в большинстве случаев как катализатор в промышленности. Если, нанример, синтезированный другим способом 2,2,3-триметилпентан обработать 98%-ной серной кислотой в условиях, в которых проходит алкилировапие (0°), то он не претерпевает никаких превращений [109]. Изооктап (2,2,4-триметилпентан) также не изо- [c.339]

    Инициированное термическое алкилирование. Термическое алкилиро-вание.парафигговых углеводородов можно осуш ествить в мягких условиях, если к смеси парафинового и олефинового углеводородов добавить небольшие количества (1—3% вес. на о бщ ую загрузку) таких веществ, как алифатические галоидные или нитросоединения [33]. Парафиновые углеводороды с прямой и разветвленной ценью алкилируются ири 300—400° и давлении 210 ат и выше. При этом получаются такие же продукты, как и при чисто термических реакциях это указывает на то, что и здесь имеет место свободно-радикальный механизм реакции, а катализаторы служат в качестве инициаторов цеии путем распада их с образованием радикалов при сравнительно более низкой температуре, чем в случае углеводородов. [c.308]


    И могут быть использованы в непрерывных процессах, йаилучшие результаты получены при применении жидких комплексов хлористого алюминия, которые вследствие нерастворимости в продукте алкилирования быстро отстаиваются. Это позволяет отделять их и снова вводить в процесс. Комплексы можно получать на месте (in situ) при помощи реакции алкилирования [2, 47] или же приготовлять предварительно путем взаимодействия хлористого алюминия с различными алифатическими углеводородами и углеводородными фракциями (например, с олефинами, с 2,2,4-триметил-пентаном, с керосином) [19]. Хорошие результаты давало использование в качестве катализатора жидкого комплекса, приготовленного взаимодействием хлористого алюминия с остатком от перегонки продукта (температура кипения около 160—200° 98,4% парафиновых и 1,6% олефиновых углеводородов), получаемого при алкилировании изобутана пропиленом и бутиленами в присутствии серной кислоты. [c.321]

    Цель подавляющего большинства существующих каталитических процессов сводйтся к получению тем или иным методом (изомеризацией, алкилированием, полимеризацией) разветвленных алифатических углеводородов. [c.228]

    Прежде чем приступить к обсуждению технических деталей, необходимо ближе с принципиальной точки зрения ознакомиться с возмолшостями превращения алифатических углеводородов в ароматические. Лишь тогда станут понятными те мероприятия, которые предпринимают в технике для достижения этой цели. Кроме того, это нозно-лит познакомиться с новой реакцией алифатических углеводородов, не менее важной, чем реакции термического и каталитического крекинга, дегидрирования, алкилирования и полимеризации. [c.99]

    Нитросоединения с нитрогруппой в ядре. Благодаря легкости получения ароматические иитросоединения имеют гораздо большее промышленное и препаративное значение, чем иитросоединения жирного ряда. В то время как алифатические нитросоединения (стр. 173 получаются преимуш,ественно путем алкилирования солей азотистой кислоты, в ароматическом ряду можно проводить прямое нитрование углеводородов, т. е. подвергать их действию крепкой азотной кислоты. [c.527]

    В процессе карбонизации вследствие протекания параллельных, последовательных и параллельно-последовательных реакций (расщепление, гидрирование, дегидрирование, изомеризация, алкилирование, деалкили-рование, полимеризация, поликонденсация и т.д.) происходят изменения состава, молекулярной структуры и ММР нефтяных систем в направлении накопления полициклических углеводородов и гетероатомных органических соединений с ароматичностью, возрастающей по мере увеличения глубины превращения исходного материала. Источником накопления ароматических молекулярных структур прежде всего являются ароматические структуры исходного материала, а затем уже продукты химических превращений алифатических и ациклических молекулярных структур. Это подтверждается результатами исследования состава и молекулярной структуры дистиллятных и остаточных продуктов термического крекинга [41...43,45], коксования [34...37,40...45,60,63,64], пиролиза [79...84], каталитического крекинга [43,45,64] и других процессов [84] деструктивной пере- [c.18]

    Алкилирование ароматических углеводородов. Для алкилирова- ия этих соединений используются те же реагенты, что и для аминов и спиртов. В случае применения в качестве алкилирующих агентов спиртов реакция протекает лишь с участием кислот. Хорошие результаты достигаются в синтезах с высшими алифатическими спиртами, главным образом с третичными. В процессе реакции происходит изомеризация радикала спирта, поэтому таким способом нельзя ввести в ядро заместители с нормальной цепью. Первичные спирты изомеризуются во вторичные, а вторичные — в третичные. [c.151]

    В опыте с грег-бутилбензолом получен с довольно хорошим выходом 2-фенил-2-мет0лпропансульфохлорид, что дает возможность применить данный метод для сульфохлорирования алкилбензолов в боковую цепь аналогичный патент взят на сульфохлорирование алкилированных ароматических углеводородов, например триамилбензола (катализатор — азотсодержащее гетероциклическое соединение, облучение вольфрамовой лампой). Другие патенты касаются сульфохлорирования соединений с триметиленовыми радикалами и алифатических углеводородов 23 в одном ИЗ НИХ В качестве катализатора предложены многочисленные органические соединения, главным образом азотистые, а в другом — хлор, сернистый ангидрид, хлористый ти-онил и окись углерода. [c.222]

    Руф [248а] описал хроматографическую систему со слабоосновной анионообменной смолой в качестве неподвижной фазы и элюентом, содержащим органическую кислоту и алифатический спирт. В условиях жидкостной хроматографии высокого давления такая система оказалась пригодной для анализа фтористого водорода, содержащего 1—3% воды. Такой метод особенно полезен для анализа продукта, получаемого при алкилировании с использованием фтористого водорода в качестве катализатора. Таким образом была разделена смесь, содержащая 92% фтористого водорода, 2% воды, 2% масел, растворимых в кислотах, и 4% легких углеводородов. Элюентом служил 1,5 М раствор муравьиной кислоты в метаноле, колонка была наполнена анионообменной смолой типа полиалкиламина. [c.297]

    Собственно, реакция Фриделя — Крафтса [45] заключается в алкилировании или ацилировании ароматического кольца в присутствии кислот Льюиса типа хлористого алюминия. Кроме того, эта реакция может быть распространена на алкилирование и ацили-рование алифатических углеводородов, как насыщенных, так и ненасыщенных [46, 47]. Основная реакция часто сопровождается вторичными реакциями типа полимеризации или изомеризации субстрата или алкилирующего агента. Далее реакция осложняется образованием комплекса между реагирующими веществами, катализаторами и продуктами, как уже указывалось в гл. I некоторые из этих комплексов могут образовывать отдельные фазы [48]. Хотя основная схема механизма реакции твердо установлена, количественное рассмотрение кинетических закономерностей наталкивается на трудности, поэтому количественный анализ проведен только для нескольких реакций, осуществленных в благоприятных условиях. К числу используемых катализаторов относятся галоидные соединения бора, алюминия, галлия, железа, циркония, титана, олова, цинка, ниобия и тантала. Все эти соединения являются акцепторами электронов и, по определению Льюиса, общими кислотами. Их функция, по-видимому, состоит в облегчении образования ионов карбония из олефинов, галоидалкилов или спиртов, из хлорангидридов алкил- или арилкарбоновых кислот, ангидридов кислот или сложных эфиров [49]. Ионы карбония легко реагируют с ароматическими углеводородами, и эти реакции открывают важные пути синтеза производных ароматических углеводородов. [c.79]

    Алкилирование низкокипящих алифатических углеводородов бензин с низким октановым числом улучшается в результате диспергирования в нел1 катализатора и введения при низкой температуре смеси изобутана и изобутилена со следами хлористого водорода если температуру процесса поддерживать около 0°, то полученный продукт имеет октановое число 86 [c.411]

    Методом ультрафиолетовой спектроскопии исследовались три-и полизамещенные гомологи бензола, полученные реакцией алкилирования ксилолов и мезитилена алифатическими и полиметиленовыми олефинами в присутствии хлористого алюминия, а также некоторые гомологи нафталина [56, 59]. Подробно изучено влияние числа и положения заместителей в бензольном кольце (на примере трех-и четырехзамещенных бензола i8 — jg) на ультрафиолетовые спектры [60]. Свойства исследованных синтетических углеводородов и ультрафиолетовые спектры приведены в табл. 51 и на рис. 44-48. [c.276]

    Галоген, связанный с углеродом органического радикала, способен вступать в реакции, известные из органической химии. (Свойства связи С-галоген, обусловленные влиянием атома кремния, будут рассмотрены в следующей главе). Галоген в алифатическом радикале омыляется под действием щелочи, замещается алкил-, алкокси-, ацилокси-, аминогруппой и т. п., с магнием образует реактив Гриньяра, отщепляется в виде галоидоводорода реагирует аналогично алкилгалогениду при алкилировании ароматических углеводородов по реакции Фриделя и Крафтса [К191, К2871  [c.145]


Смотреть страницы где упоминается термин Углеводороды алифатические, алкилирование: [c.5]    [c.243]    [c.302]    [c.37]    [c.60]    [c.227]    [c.333]    [c.434]    [c.41]    [c.222]    [c.625]    [c.876]    [c.236]    [c.37]    [c.37]    [c.166]   
Новые методы препаративной органической химии (1950) -- [ c.71 ]

Безводный хлористый алюминий в органической химии (1949) -- [ c.739 ]




ПОИСК





Смотрите так же термины и статьи:

Углеводороды алифатические



© 2025 chem21.info Реклама на сайте