Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия сокращения мышц

    В клетках живых организмов эндергонические реакции, связанные с затратой энергии, идут за счет химической энергии, освобождаемой при экзергоническом расщеплении молекул углеводов, жиров, белков и других веществ. Основные ироцес-сы требующие затрат энергии, — биосинтез более сложных молекул из более простых, выполнение механической работы (например, при сокращении мышцы), накопление веществ или их активный перенос против градиента химического потенциала , для растительных организмов главные реакции, протекающие с затратой энергии, — синтетические процессы. Экзергоническне и эндергонические процессы в клетках тесно взаимосвязаны, и-в большинстве случаев усиление синтетических реакций требует усиления процессов распада веществ, при которых выделяется энергия, необходимая для синтеза веществ. [c.18]


    Эта реакция протекает во всех живых организмах, как в растительных, так и в животных. Энергия сохраняется в АТФ и используется в дальнейшем во всех процессах, протекающих с расходованием энергии сокращение мышц, синтез макромолекул, умственная энергия и т. д. [c.500]

    Рассмотрим теперь, как же функционирует биологическая машина — живой организм. С точки зрения последовательного научного материализма к явлениям жизни полностью применимы все основные законы физики и химии. В частности, превращения энергии в организме должны строго подчиняться законам термодинамики. Однако очевидно, что процесс получения работы при сокращении мышц находится в кажущемся противоречии с выводами из теоремы Карно. Ведь в живом организме нет сколько-нибудь значительных перепадов температур  [c.67]

    В процессе сокращения субъединицы чехла перестраиваются, образуя структуру из 12 колец большего размера, каждое из которых состоит из 12 субъединиц . Происходит своеобразное взаимное проникновение субъединиц (интеркаляция). Строго определенная направленность и необратимый характер этой структурной перестройки отличают укорочение отростка фага от процесса сокращения мышцы. Вполне возможно, что в чехле фага белковые субъединицы находятся в нестабильном высокоэнергетическом состоянии и запасенная в процессе сборки энергия используется затем для реализации процесса сокращения. [c.329]

    Мышечная ткань составляет 40-42% от массы тела. Основная динамическая функция мышц-обеспечить подвижность путем сокращения и последующего расслабления. При сокращении мышц осуществляется работа, связанная с превращением химической энергии в механическую. [c.645]

    Движущей силой мышечного сокращения является высокая способность АТФ переходить в более стабильное состояние, в данном случае в несколько менее богатое энергией соединение — аденозиндифосфат (АДФ) и фосфат-ион. При мышечном сокращении расходуется АТФ. Очевидно, что если бы запасы АТФ расходовались и не пополнялись, то сокращение мышцы вскоре [c.376]

    Огромное значение для регуляции работы систем биохимических процессов имеет пространственная организация этих систем. Уже в пределах клеток эукариот многие процессы пространственно разобщены, поскольку происходят в различных органеллах. Распределение биохимических процессов по отдельным участкам клеток (компартментализация) будет рассмотрено в 10.4. Уже этот вопрос выходит за рамки собственно биохимии и является в большей мере предметом клеточной биологии. Еще дальше от биохимии отстоят более высокие уровни пространственного разобщения биологических процессов по разным органам многоклеточных организмов. Так, уже говорилось о регуляторной роли эндокринной и нервной систем. Их изучение является в первую очередь предметом физиологии, которая в последние десятилетия превратилась из описательной науки в область знания, прочно опирающуюся на сведения о биохимических и биофизических процессах, протекающих в животных и растениях. Тем не менее, чтобы дать читателю некоторое представление о взаимосвязи физиологических и биохимических процессов, в 10.5 вкратце рассматривается вопрос о биохимических аспектах мышечного сокращения - один из первых физиологических вопросов, в котором такое сложное явление, как превращение химической энергии в сокращение мышц, было в значительной мере осмыслено на основе биохимических концепций, таких, как ферментативный катализ и конформационные переходы. [c.421]


    АТФ играет важную роль в процессах обмена веществ в живых организмах. Она является своеобразным аккумулятором энергни, поставщиком химической энергии в различных процессах биосинтеза и в таких физиологических процессах, как сокращение мышц. [c.715]

    Сокращение мышцы происходит вследствие взаимного скольжения двух сеток волокон (рис. 3—6). Это передвижение сопряжено с гидролизом богатых энергией молекул аденозинтрифосфорной кислоты (АТФ), происходящим на уровне поперечных мостиков (рис. 2, в). Ресинтез молекул АТФ идет за счет энергии окисления определенных сахаров. Во время этого процесса поперечные мостики попеременно разрушаются и восстанавливаются, причем механизм этого явления понят не до конца. [c.287]

    Энергия, необходимая для сокращения мышц, высвобождается непосредственно при разрыве одной из таких макроэргических фосфатных связей. Это можно выразить следующим уравнением  [c.376]

    На основании опытов Л. Гальвани физик А. Вольта пришел к выводу, что электрическая энергия, обусловливающая сокращение мышц лягушки, возникает в месте соприкосновения двух различных металлов. Исходя из этой гипотезы, А. Вольта в 1799 г. создал первый химический источник электрической энергии. Он состоял из серии медных и цинковых кружков, попарно соприкасающихся друг с другом и разделенных суконными прокладками, смоченными кислотой  [c.12]

    Эта энергия используется организмом для синтеза других весьма реакционноспособных соединений, которые не приведены на нашей упрощенной схеме (9)—(14). Эти реакционноспособные молекулы принимают участие в других процессах (например, в сокращении мышц), при которых энергия расходуется. Часть этой энергии накапливается в образующихся соединениях (теплосодержание или химическая энергия молекул при этом возрастает). Способность к такому накоплению энергии позволяет живым организмам использовать энергию, выделяющуюся при окислении. [c.634]

    Были проделаны специальные опыты с изолированными мышцами животных. Если мышца работает в атмосфере, лишенной кислорода, то обычно источником энергии является гликоген, превращающийся в глюкозу. Молочная кислота — продукт окисления глюкозы — остается в тканях, и очень скоро деятельность мышцы прекращается. В опытах с изолированными мышцами сокращение мышцы (ее работа) вызывалась действием электрического тока. В ответ на раздражение током она сокращалась. При значительном накоплении в клетках молочной кислоты мышца теряла способность отвечать на раздражения. [c.113]

    Ферменты представляют собой вещества или чисто белковой структуры, или протеиды — белки, связанные с небелковой простетической группой. Число уже известных ферментов очень велико. Считают, что одна клетка бактерии использует до 1000 разных ферментов. Однако лишь для немногих установлено строение. Примерами чисто белковых ферментов могут служить протеолитические ферменты пищеварения, такие, как пепсин и трипсин. Известны случаи, когда один и тот же белок несет в организме и структурную и ферментативную функцию. Примером служит белок мышц миозин, каталитически разлагающий аденозинтрифосфат— реакция, в данном случае дающая энергию сокращения мышцы (В. А. Энгельгардт, М. Н. Любимова). [c.698]

    Природа макроэргических связей. Какие же закономерности в строении молекул макроэргических соединений обеспечивают их особую роль в обмене веществ и энергии Чтобы ответить на этот вопрос, рассмотрим структуру молекулы аденозинтрифосфорной кислоты (АТФ)—наиболее важного макроэргического соединения в организме. Впервые внимание на ее роль в энергетическом обеспечении химических процессов обратил Ф. Липманн (1939—1941), а механизм распада под действием миозина и переход энергии макроэргической связи в механическую энергию сокращения мышцы исследовали В. А. Энгельгардт и М. Н. Любимова (1939). [c.184]

    МИОЗИН (греч. туз — мышца) — белок мышц, фибриллярный белок, основной белковый компонент мышечных волокон. При отщеплении от адено-зинтрифосфорной кислоты (АТФ) одной молекулы фосфорной кислоты под дей-свием М. освобождается энергия, расходуемая на сокращение мышц. [c.162]

    Одна из важнейших проблем термодинамики — это проблема совершения системой работы за счет энергии, получаемой в форме теплоты из окружающей среды. В технике к этой проблеме сводится задача всех тепловых машин (паровых поршневых ма-Я1ИН, паровых турбин, двигателей внутреннего сгорания и т. д.), назначение которых — совершать максимальное количество работы, затрачивая энергию в форме теплоты (сжигая топливо). В биологии к этой же проблеме сводится вопрос о работе, совершаемой живым организмом при сокращении мышц. Источником энергии в этом случае является энергия, освобождающаяся при оккслении ( сжигании ) жиров в организме. С первого взгляда молсет показаться, что термодинамические основы всех этих процессов аналогичны. Однако, как будет показано низко, процессы в лсивом организме и в тепловых машинах с термодинамической точкп зрения принципиально различны. [c.63]

    Особенно удивительным следует считать то, что передача аденозинтри-фосфатом свободной (способной произвести химическую работу) энергии оказывается возможной не для протекания вполне определенных специальных (специфически обусловленных набором случайностей) химических реакций, а совершается как-то универсально АТФ является действенным источником свободной энергии для очень большого набора разнообразных химических процессов, делая осуществимыми многие самые трудные и важные для жизни химические превращения к этому списку реакций можно причислить и процессы дыхания, и фотосинтез, и сокращение мышц, и синтез белков, а также нуклеиновых кислот с их наследственной информацией и т. п. [c.330]


    Эти данные согласуются с представлениями о мышечном сокращении, которые проиллюстрированы на рис. 15.10. Каждый филамент миозина имеет около 1800 выступающих концевых участков цепей (головок). На каждой молекуле актина, входящей в актиновый филамент, имеются участки, комплементарные определенным участкам на головках молекул миозина и способные взаимодействовать с ними с образованием слабой связи (см. разд. 15.5). Комплементарность может быть нарушена в результате изменений в структуре взаимодействующих участков, причем это изменение может быть вызвано каким-либо источником энергии. При стимуляции сокращения мышцы комплементарные участки начинают соединяться. Цепи миозина вытягиваются вдоль филамента актина, причем каждая цепь движется к следующему месту связывания, в результате чего филамент актина все дальше втяги- [c.437]

    В живых организмах АТФ, АДФ и АМФ присутствуют в связанном с белками состоянии и в виде комплексов с ионами Mg и Са . Скелетные мышцы млекопитающих содержат АТФ до 4 г/кг. У человека скорость обмена АТФ составляет ок. 50 кг в сут. Такая интенсивность обмена объясняется тем, что этот нуклеотид занимает центр, место в энергетике живых организмов. Сокращение мышц, биосинтез белков и нуклеиновых к-т, многие др. процессы, идущие с увеличением своб. энергии, сопряжены с гидролизом АТФ. Часть из них проходит с отщеплением от АТФ НэРО , другая-Н4Р2О,. В живой клетке ЛС гидролиза АТФ составляет — 50 кДж/моль. Сравнительно высокая абс. величина ДС" гидролиза двух ангидридных связей [c.33]

    Минеральное сырье—полезные ископаемые, которые служат сырьем для производства кислот, щелочей, солей, удобрений и других химических продуктов. Минеральные удобрения — неорганические соединения, содержащие необходимые для растений элементы питания (напр., фосфорные, азотные, калиевые и др.). Миозии (от греч. mys — мышца) — белок мышц при отщеплении от аденозин-трифосфорной кислоты (АТФ) одной молекулы фосфорной кислоты под действием М, освобождается энергия, расходуемая на сокращение мышцы. [c.83]

    Тот факт, что комплекс актина и миозина ответствен за сокращение мышцы, был известен задолго до выяснения тонкой структуры миофнб-рилл. Уже примерно в 1929 г. было установлено, что источником энергии при мышечном сокращении является АТР, однако только спустя 10 лет Энгельгардт и Любимова показали, что выделенные из мышцы препараты миозина катализируют гидролиз АТР [88а], доказав тем самым, что энзиматические механизмы, обеспечивающие использование свободной энергии, которая высвобождается при гидролизе АТР, связаны с основными белками, образующими мышечные волокна. Позднее [c.323]

    Координирующая роль мембран состоит в том, что многие ферменты активны только в связанном с мембранами состоянии (мембраны создают своеобразный биологический конвейер ). Поэтому, важна также векторная роль мембран в действии ферментов. Примерами могут быть процессы фотосинтеза трансформация энергии и биосинтез органических веществ протекает на мембранах как высокоорганизованный процесс дыхание и окислительное фосфолирование в мембранах митохондрий, а также всасывание и переваривание пищи, возникновение и передача импульсов в нервной системе, работа органов чувств, работа сердца, сокращение мышц. [c.108]

    Ответ АТРазы миозина показывает, что одинаково важны и действия белка и контроль над этим действием. Миозин проявляет АТРазную активность только при сокращении мышцы высокая активность АТРазы в отсутствие взаимодействия актин — миозин была бы бессмысленной затратой химической энергии. [c.287]

    На ранней стадии сокращения, до развития напряжения пли до укорочения выделяется теплота активации порядка 4,2 мДж на 1 г массы мышцы. Эта теплота, по-видимому, связана с выделением ионов Са " " в саркоплазму и с их взаимодействием с ак-томиозиновой системой. Далее, по мере сокращения мышцы и производства работы, выделяется теплота сокращения Q . Если мышца укорачивается, выделяется быстрее, чем при изометрическом сокращении аа то же время. Общее изменение энергии в процессе сокращения равно [c.401]

    Установлено, что если мышца может укорачиваться, полная энергия, выделяемая мышцей во время одиночного сокращения, больше, чем при изометрическом сокращении. Это эффект Фенна. [c.402]

    Сокращение мышц приписывалось переходу миозина из а-формы в сверхсокра-щенную форму (Астбери) или из -формы в а-форму (Полинг и Корей). Существующие до настоящего времени экспериментальные доказательства неоднозначны, однако весьма вероятно, что явление сокращения мышц основывается на изменении конформации макромолекул. При сокращении мышц происходят ионные обмены, а именно ионы калия мышцы, находящиеся в покое в недиализирующейся форме, подвергаются диализу после сжатия. Миозин действует как фермент на аденозинтрифосфорную кислоту, от которой он отщепляет фосфат-ион, превращая ее в аденозинди-фосфорную кислоту (Н. М. Любимова и В. А. Энгельгардт, 1939). Эта реакция является, по всей вероятности, одной из фаз процесса превращения химической энергии в механическую энергию в мышцах вследствие высокоэргического характера связи фосфатного остатка в аденозинтрифосфорной кислоте (см. Аденозинтрифосфорная кислота ). [c.445]

    АТР и фосфокреатин как источники энергии в мышцах. При сокращении скелетной мышцы в ней снижается концентрация фосфокреатина, тогда как концентрация АТР остается практически постоянной. Объясните, как это происходит. Роберт Дэвис в своих классических опытах показал, что после предварительной обработки мыпщы фтор-2,4-динитробензолом концентрация АТР в ней быстро падает, тогда как концентрация фосфокреатина остается неизменной на протяжении серии сокращений. Попытайтесь это объяснить. [c.777]

    Аденозинтрифосфорная кислота (АТФ) благодаря своим богатым энергией полифосфатным связям и широкому распространению в животных и растительных организмах является главным энергетическим веществом живых организмов. Энергия АТФ потребляется при боль -шом числе биохимических реакций. Исключительно важную роль АТФ играет в энергетике сокращения мышц. Аденнновые нуклеотиды участвуют в построении нуклеиновых кислот. [c.409]

    Существует мнение, что донорно-акцепторные комплексы выполняют важные функции в поддержании процесса превращения энергии в пластинчатых биологических системах. Обобщенное описание их функций в процессах фотосинтеза [42] и сокращения мышц [43] дано Кирнсом и Кэлвином [44]. В растворе комплекс не может аккумулировать энергию, поглощаемую при переносе заряда, так как переход в основное состояние происходит слишком быстро. Если, однако, компоненты комплекса расположены слоями в твердом состоянии, поляризация, вызываемая переходом электронов от донора к акцептору при фотовозбуждении, может достичь большего диапазона вследствие диффузии заряда в каждом твердом слое. Окисленный донор и восстановленный акцептор в таких условиях становятся относительно свободнее для того, чтобы независимо выполнять функции как химических, так и электрических агентов. В главе V уже обсуждались электрические и магнитные эффекты при фотовозбуждении модельных систем, построенных из твердых слоев сравнительно простых доноров и акцепторов. [c.165]

    Прекрасной иллюстрацией значения белков является раскрытие механизма мышечного сокращения. Установлено, что в основе мышечного сокращения лежит изменение физического состояния особого сократительного белка мышц — актомиозина в результате взаимодействия его с аденозинтрифосфорной кислотой (стр. 448). Это взаимодействие мышечного белка с аденозинтрифосфатом, сопровождающееся сокращением миофибрилл, можно наблюдать in vitro, т. е. вне орга-иизма. Если, например, на мацерированные (вымоченные в воде) мышечные волй кна, лишенные возбудимости, подействовать раствором аденозинтри-( юсфата (при определенных концентрациях солей), то можно наблюдать резкое сокращение этих волокон, во многих отношениях подобное сокращению живой мышцы. Здесь имеется совершенно несомненное доказательство того, что для сокращения мышцы необходимо химическое взаимодействие мышечных белков с богатым энергией химическим веществом. [c.8]

    Однако представление о возможности использования при сокращении мышцы энергии АТФ в процессе Г-Ф-превращения актина не получило подтверждения в работах американского биохимика Джерджели, по данным которого в живой мышце актин находится в Ф-форме. В связи с этим ряд авторов (Оосава и др.) пытаются заменить представление Штрауба концепцией о возможности линейно-спиральной трансформации полимерного актина в сократительном акте. Эта теория построена на новых данных [c.449]

    Значение доннановского равновесия в сшитых полиэлектролитах очень велико для биологических систем. Более подробно вопрос о мембранном равновесии в белках рассмотрен в монографии Тенфо да (21, с. 258]. Здесь необходимо сказать о предполагаемом механизме сокращения мышц, основанном на эффекте изменения набухания (детально этот вопрос разобран в специальной литературе, которая посвящена биологическим системам). Речь идет о так называемой механохимии или, как более правильно принято обозначать эту область явлений в советской научной литературе, о хемомеханике , в которой рассматриваются, в частности, системы сшитый полиэлектролит — водный раствор электролита с точки зрения превращения химической энергии (реакция нейтрализации) в механическую (одноосное сокращение и удлинение студня, используемое для производства механической работы). Следует заметить, что хемомеханика в общем виде включает и рассмотрение многих других способов переработки химической энергии в механическую. [c.71]

    Проницаемость в живых клетках представляет собой активный процесс и имеет мало общего с молекулярной диффузией или осмотическим потоком. Наоборот, активный транспорт осуществляется чаще всего против градиента концентрации, т. е. в направлении от мепьшей концентрации к большей. Ясно, что это — сложное явление, в котором обязательно должна потребляться энергия, так как движение веществ в направлении, обратном диффузии, связано с уменьшением энтропии. Активный перенос веществ как внутрь клетки из внешней среды, так и внутрь различных структурных элементов из заполяющей клетку гиалоплазмы осуществляется особыми нерастворимыми белками и белковыми комплексами, образующими наружную клеточную мембрану и различные структурные образования внутри клеток. Активный транспорт через мембраны и внутрь клеточных органелл связан с протеканием химических реакций, конечно, ферментативных. Поэтому проблема проницаемости и соответствующая функция белков тесно связана с их ферментативной функцией. С другой стороны, с помощью активного транспорта осуществляется один из механизмов автоматического регулирования. Как мы увидим дальше, регулирование проницаемости митохондрий осуществляется путем их сокращения пли расслабления. Причиной этого движения яляется сократительная реакция в особом белке, т. е. это явление вполне аналогично сокращению мышцы. [c.139]

    Во время сокращения мышцы происходит превращение химической энергии в механическую. Можно вычислить термодинамические характеристики этой реакции, если предположить, что растянутый миозин и сокращенный миозин являются модификациями одного и того же белка, и если исследовать взаимные превращения обеих модификаций при различных температурах (см. стр. 158). Проведенные измерения показали, что изменения в свободной энергии ( F) составляют 7 ООО— 8 500 тл1моль, а тепловой эффект равен 53 500—56 ООО кал1моль [143]. [c.193]


Смотреть страницы где упоминается термин Энергия сокращения мышц: [c.7]    [c.331]    [c.664]    [c.409]    [c.421]    [c.10]    [c.435]    [c.17]    [c.490]    [c.247]   
Биохимия Том 3 (1980) -- [ c.336 ]




ПОИСК





Смотрите так же термины и статьи:

Мышца



© 2025 chem21.info Реклама на сайте