Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы атомизация

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]


    В 1974 г. ИЮПАК провел опрос сотрудников ряда лабораторий о методах определения следовых количеств элементов в высокочистых химических реактивах. На основании 200 ответов методы были расположены в соответствии с полученными статистическими данными и частотой их использования в лабораториях (табл. Д.ЗО). В ряде лабораторий используют все методы, II большинстве применяют несколько методов, и только немногие лаборатории специального назначения используют в работе один метод. Как видно из табл. Д.ЗО, атомная абсорбция с пламенной или электротермической атомизацией, а также определение щелочных металлов методом фотометрии пламени занимают первое место, за ними вплотную следуют метод абсорбционной спектрофотометрии растворов несколько реже [c.419]

    Приведенные в табл. 14.2 данные показывают, что в большинстве случаев свойства щелочных металлов закономерно изменяются при переходе от лития к цезию. В основе наблюдающихся закономерностей лежит возрастание массы и радиуса атома в подгруппе сверху вниз. Рост массы приводит к возрастанию плотности. Увеличение радиуса обусловливает ослабление сил притяжения между атомами, что объясняет снижение температур плавления и кипения и уменьшение энергии атомизации металлов, а также уменьшение энергии ионизации атомов при переходе от лития к цезию. Однако стандартные электродные потенциалы щелочных металлов изменяются в ряду Li — s не монотонно. Причина этого, подробно рассмотренная в разделе 11.3.2, заключается в том, что величины электродных потенциалов связаны с несколькими факторами, различно изменяющимися при переходе от одного элемента подгруппы к другому. [c.383]

    Сравнивая данные табл. 27.1 с соответствующими величинами для щелочных металлов (табл. 14.2), можно видеть, что радиусы атомов меди, серебра и золота меньше радиусов атомов металлов главной подгруппы. Это обусловливает значительно большую плотность, высокие температуры плавления и большие величины энтальпии атомизации рассматриваемых металлов меньшие по размеру атомы располагаются в решетке более плотно, вследствие чего силы притяжения между ними велики. [c.533]

    Пропан — воздушное пламя в настоящее время применяют крайне редко, лишь для определения щелочных металлов. Это связано с низкой температурой пламени, в котором не происходит полная атомизация большинства элементов. Но для определения щелочных элементов пропан и природный бытовой газ предпочтительней, так как они позволяют получить более ста- [c.34]


    Наибо.пее полные исследования процессов испарения металлов с поверхиости пористого графита проведены в работах [18—22]. На основе этих экспериментов предсказано прямое взаимодействие меди, золота и серебра с углеродом ири высоких температурах [18], подтвержденное в дальнейшем химическими опытами [23], определены тепловые эффекты растворения некоторых переходных металлов в графите [22], подтверждена гипотеза образования межслойных соединений щелочных металлов нри атомизации в графитовых печах [21], показано образование карбидов щелочноземельных металлов и уточнены тепловые эффекты соответствующих реакций [20], выявлены стадии, лимитирующие испарение ряда других металлов [19]. [c.49]

    Сравнивая данные табл. 31 с соответствующими величинами для щелочных металлов (табл. 30), можно видеть, что радиусы атомов меди, серебра и золота меньше радиусов атомов металлов главной подгруппы. Это обусловливает значительно большую плотность, высокие температуры плавления и большие величины энтальпии атомизации рассматриваемых металлов меньшие по раз- [c.562]

    Энергия атомизации (табл. 30) плавно спадает от [Ь ] к [Рг]. В твердом состоянии при обычных условиях щелочные металлы имеют металлический блеск, они непрозрачны, мягки (режутся ножом), имеют хорошую [c.138]

    Результат наложения на энергетику окислов щелочных металлов энергий атомизации [c.180]

    Экспериментально энергия ионной кристаллической решетки может быть определена по термохимическому циклу (циклу Борна-Габера), включающему атомизацию простых веществ, ионизацию атомов (перенос электрона от атома одного типа к атому другого типа) и образование кристаллической решетки из ионизированного газа. Если известны энергии атомизации, потенциал ионизации, сродство к электрону и теплота образования рассматриваемого вещества из простых веществ, то может быть вычислена энергия кристаллической решетки по термохимическому закону Гесса. Оказалось, что формула (1.74) хорошо описывает энергию образования решеток галогенидов щелочных металлов, несколько хуже — оксидов и галогенидов щелочноземельных металлов и значительно хуже — сульфидов, селенидов, соединений металлов в высоких степенях окисления и т.д. Это, очевидно, связано с тем, что химическая связь в этих веществах не является полностью ионной. Отклонение от ионной модели может быть следствием поляризаций (смещения электронной плотности) анионов с относительно рыхлыми электронными оболочками под действием катионов с достаточно высокой плотностью заряда (т. е. может происходить перенос части электронной плотности от аниона обратно к катиону). [c.80]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    Оценивая информацию по пределам обнаружения элементов в ИСП-источнике, можно отметить, что при определении щелочных элементов метод намного уступает пламенным источникам атомизации и возбуждения (табл. 3.15). Пределы обнаружения для тугоплавких металлов близки к таковым в дуговом разряде постоянного тока. [c.74]

    Сравнительно небольшими энергиями атомизации характеризуются щелочные и простые 5р-металлы. Для этих металлов сверху вниз по Периодической системе происходит закономерное уменьшение значений энергий атомизации. Для переходных металлов наблюдаются большие величины энергий атомизации и, самое главное, с увеличением атомной массы их значения возрастают. В целом энергия межатомной связи в переходных металлах соизмерима с энергией ковалентных связей. [c.127]


    Сравнительно небольшими энергиями атомизации характеризуются щелочные и простые А р-металлы. Для этих металлов сверху вниз по Периодической системе происходит закономерное уменьшение значений энергий атомизации. Для переходных металлов наблюдаются большие величины энергий атомизации, соизмеримые с энергией ковалентных связей. [c.94]

    Металлическая связь не исключает некоторой доли ковалентности. Металлическая связь в чистом виде характерна только для щелочных и щелочно-земельных металлов. Ряд физических свойств других металлов, особенно переходных (температуры плавления и кипения, энергия атомизации, твердость, межатомные расстояния), свидетельствуют о несводимости химической связи в них то,пько к металлической. Современными физическими методами исследования установлено, что в переходных металлах лишь небольшая часть валентных электронов находится в состоянии обобществления. Число электронов, принадлежащих всему кристаллу, невелико--1 электрон/атом. Например, такой типичный переходный металл, как ниобий, имеет концетрацию обобществленных электронов всего лишь 1,2 на один атом Nb. Остальные же электроны осуществляют направлен- [c.95]

    То обстоятельство, что образование перекисей характерно для щелочных и щелочноземельных металлов, приводит к выводу о возможном образовании перекисей теми металлами, которые имеют теплоты атомизации, т. е. теплоты разложения на свобод- [c.269]

    Для определения концентрации растворов в основном используются пламенные источники атомизации и возбуждения. Несмотря на ряд ограничений, пламенно-эмиссионный метод остается одним из самых простых и чувствительных методов определения растворимости солей легко возбуждаемых элементов - щелочных и щелочно-земельных металлов [182-186] и некоторых переходных элементов [187, 188] как в водных, так и в неводных растворителях. Предел обнаружения этим методом для щелочных и щелочноземельных металлов находится в диапазоне 0,001-1 нг МЛ". Предел обнаружения порядка 0,1-1 нг мл" достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий. [c.297]

    Периодичность проявляется и в энергиях диссоциации двухатомных молекул (рис. 125). Если энергия атомизации характеризует прочность связей в криста-лле как высшей форме организации вещества, то энергия диссоциации является аналогичной характеристикой молекулярной формы. Молекулярная форма организации у простых веществ встречается сравнительно редко в стандартных условиях двухатомные молекулы образуют водород, азот, кислород и галогены, а при высоких температурах в этой форме существуют пары щелочных металлов, углерода (выше 3600°С), халькогенов (кроме полония) и пниктогенов (кроме висмута). Таким образом, молекулярная форма в парообразном состоянии наиболее характерна для неметаллов. Большинство же металлов (за исключением щепоч- [c.247]

    Большой вклад в фоновые помехи вносят молекулярные спектры поглощения на длине волны аналитической линии вследствие неполной атомизации пробы или образования в пламени новых соединений или радикалов. Роль этого вида помех особенно значительна, когда в пламя вводят низкокипящие термостойкие соединения, например галогениды щелочных металлов. При испарении растворов иодида, иодата и перйодата калия в графитовой кювете (200 мкг/г) наблюдается одинаковый спектр, характерный для иодида с интенсивными максимумами около 200 и 240 нм. Это объясняется тем, что иодат и лериодат при нагреве разлагаются с образованием иодида, который испаряется без диссоциации. Характерной особенностью молекулярных спектров галогенидов является сравнительная резкость пиков, особенно в области длин волн меньше 240 нм. Это следует учитывать при измерении и коррекции фона [237]. Важно, что отрицательное влияние фона возрастает по мере уменьшения концентрации определяемого элемента. [c.130]

    ГИИ диссоциации молекул Рг и большой энергии связи С—F), а йод, наоборот, даже не дал продукта внедрения, среди щелочных металлов наиболее прочно связывается с графитом цезий, а натрий и в особенности литий не дают графитидов. Это понятно, так как сумма энергий атомизации и ионизации лития равна 163 ккал/г-атом, для натрия эта величина равна 144, а для калия, рубидия и цезия соответственно 121, 116 и 108 ккал/г-атом. [c.379]

    Составляющими кругового процесса ( IV. 10) являются энергии сублимации металла и неметалла с образованием атомного пара того и другого. В то время, когда круговой процесс был впервые предложен — почти полвека назад, энергии сублимации лишь в малом числе случаев (например, щелочных металлов) не считались энергиями атомизации. Так, например, считалось, что большинство металлов испаряется с образованием одноатомного пара. Однако за истекшие десятилетия в результате развития масс-спектрометрических и спектральных исследований молекулярного состава пара разных простых веществ и химических соединений выяснилось, что это не всегда так. Весьма многие твердые и жидкие фазы находятся в равновесии с молекулярным неодноатомным паром. Притом пар состоит из молекул разного состава, изменяющегося с температурой, даже для ряда простых веществ (табл. IV.15) [461. [c.363]

    Изменение значений энергии атомизахщи ( ат) многих двухатомных молекул простых веществ отвечает также вертикальной периодичности (см. рис. 7). Энергия атомизации — это энергия разрыва химической связи для реакции диссоциации молекул на нейтральные атомы. Из рис. 7 следует, что максимумы на кривых ат=/(2) повторяются у элементов VA-группы, а минимумы — у галогенов и щелочных металлов. [c.53]

    Металлическая связь ярко проявляется в щелочных и щелочноземельных металлах. В металлах переходных элементов образование энергетических зон и наличие металлической связи определяется перекрыванием 5-, и р-орбиталей. Но химическая связь в металлах й- и /-элементов не является только металлической связью их специфические свойства (высокие энергии связи атомов и энергии атомизации, высокие температуры плавления и кипения) не исключают возможного возникновения направленной связиспере-крьшанием -орбиталей. [c.123]

    Пламя — самый низкотемпературный источник атомизации и возбуждения, используемый в АЭС. В зависимости от состава горючей смеси температура пламени может составлять от 1500 (светильный газ — воздух) до 3000 °С (С2Н2 — N20). Такие температуры оптимальны для определения лишь наиболее легко атомизируемых и возбудимых элементов, в первую очередь щелочных и щелочно-земельных (Са, 8г, Ва) металлов. Для них метод фотометрии пламени является одним из самых чувствительных (пределы обнаружения до 10" % масс.). Для большинства других элементов пределы обнаружения на несколько порядков выше. [c.229]

    Чувствительность. Пределы обнаружения в АЭС зависят от способа атомизации и природы определяемого элемента и могут изменяться в широких пределах (см. табл. 11.4). Для легковозбудимых и легкоионизирующихся элементов (щелочные и большинство щелочноземельных металлов) наилучшим источником атомизации является пламя (с до 10 % масс.). Для большинства других элементов наивысшая чувствигельность достигается при использовании ИСП (до 10" % масс.). Традиционные источники атомизации — дуга и искра — наименее чувствительны. Высокие пределы обнаружения в искровом разряде (на 1—2 порядка выше, чем в дуговом) обусловлены тем, что он происходит в весьма малой области пространства (значительно меньшей, чем дуговой). Соответственно, мало и количество испаряемой пробы. [c.238]

    Следует остановиться еще на одном гибридном атомизаторе системе проволочное кольцо — пламя. Кольцо диаметром 4 мм из платиновой проволоки диаметром 0,5 мм установлено в керамическом держателе с электрическими контактами. К кольцу подводят электроэнергию с напряжением до 2,5 В, силой тока до 20 А. На кольцо наносят 1—40 мкл анализируемого раствора и сушат электронагревателем. Для сушки 40 мкл водного раствора требуется 2 мин. При ускорении сушки возможны потери определяемых элементов. После сушки кольцо быстро вводят в пламя и включают электронагрев на полную мощность. За время меньше 1 с температура кольца повышается до 1250°С, и происходит атомизация пробы в пламени. Записывают пик абсорбционного сигнала. Для получения ацетилено-воздушного пламени используют горелку со щелью длиной 8 мм и шириной 0,5 мм. Для введения кольца в пламя сконструировано электромагнитное устройство, которое одновременно включает электропитание кольца для атомизации, С одним платиновым кольцом можно сделать свыше 1000 определений. При испарении 40 мкл раствора достигнуты следующие пределы обнаружения (в мкг/мл) кадмий — 0,25, мышьяк—1,5, свинец — 4, сурьма—10 при испарении 10 мкл цинк—1, висмут — 20, теллур — 30, селен — 60, ртуть — 100. Щелочные и щелочноземельные металлы определяют по эмиссионным спектрам. Предел обнаружения (в нг/мл) при испарении 10 мкл раствора составляет литий — 0,06, натрий и стронций—10, цезий — 80, барий — 90, калий — 1000 [98]. [c.58]


Смотреть страницы где упоминается термин Щелочные металлы атомизация: [c.570]    [c.63]    [c.570]    [c.129]   
Неорганическая химия Том 1 (1970) -- [ c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Атомизация



© 2025 chem21.info Реклама на сайте