Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорости реакций диссоциации молекул

    Для выяснения конкурентных отношений между этими реакциями недостаточно знания скоростей прямых реакций, необходимо также знать положение равновесия в этих реакциях. Располагая величинами констант равновесия реакций соединения радикалов с молекулами алкенов, реакций замещения радикалов с молекулами алканов и алкенов, а также реакций диссоциации молекул на радикалы (мономолекулярным или бимолекулярным путем), можно выяснить, являются ли равновесия при некоторых из этих реакций в условиях крекинга причиной замедления реакций распада алканов, описанного в предыдущей главе. Так, например, реакции присоединения атомов Н к молекулам пропилена или изобутилена могут вызывать торможение цепного распада вследствие меньшей активности вторичных пропильных и третичных изобутильных радикалов в том лишь случае, когда эти радикалы обладают устойчивостью в условиях крекинга алканов, т. е. при значительном размере обратимой реакции образования их. Точно так же и реакции замещения Н и СНз-радикалов с молекулами алкенов, несмотря на возникновение в результате этих реакций менее активных радикалов, не смогут явиться серьезной помехой для развития цепей крекинга, если равновесия в этих реакциях в условиях крекинга сильно смещены в сторону исходных продуктов. [c.246]


    Формула (157) хорошо согласуется с экспериментальными значениями, найденными для энергии активации многих реакций диссоциации радикалов. Для тех же реакций, энергия активации которых неизвестна, формула (157) позволяет вычислить энергии активации обратимой радикальной реакции, если известен с хорошей точностью тепловой эффект. Так можно было вычислить энергии активации реакций диссоциации третичных изобутильных и винильных радикалов. да и других реакций. Результаты расчета Кр по отношению констант скоростей прямой и обратной реакций, представлены в табл. 46. Эти результаты также приводят к выводу, что при температурах обычного крекинга реакции присоединения атомов Н к непредельным углеводородам смещены в сторону сложных радикалов, образующихся в результате присоединения атомов Н по месту кратных связей. В тех же условиях реакции диссоциации пропильного и бу-тильного радикалов на молекулы олефинов и СНз-радикалы сильно смещены в сторону продуктов диссоциации, что свидетельствует об их неустойчивости относительно этого направления распада. [c.253]

    Константа скорости реакции диссоциации молекул А В равна сумме констант реакций взаимодействия молекул А В с АВ, А, А, А В и В. То же самое для молекулы АВ. Из теории столкновений константа скорости при столкновениях частиц АВ между собой запишется как [c.88]

    Для определения энергии активации необходимо измерить скорость реакции диссоциации молекулы А—В или, что то же, скорость образования радикалов А- и В- при различных температурах. Для таких измерений было выработано несколько методов. В одном из них употребляют масс-спектрометр, при помощи которого можпо непосредственно идентифицировать образующиеся радикалы, например при термическом разложении, и измерить их массы. [c.145]

    Уравнение (63) описывает не только скорость крекинга-алкана при гомогенном зарождении цепей, но и случай,, когда реакция зарождения происходит на поверхности реактора в линейной области адсорбции алкана на стенках, но при этом под йо следует понимать константу скорости гетерогенной диссоциации молекулы М на радикалы. Однако, если реакция зарождения происходит на стенках в условиях, насыщения адсорбционного слоя, то скорость распада алкана изобразится другим уравнением  [c.133]

    Рассмотрим некоторые данные кинетического и термодинамического изучения реакций диссоциации молекул алканов на радикалы, которые получены в работах Цанга [136] . Используем вначале экспериментальные кинетические параметры для реакций рекомбинации алкильных радикалов и по известным термодинамическим свойствам реагентов определим константы скорости реакций диссоциации. Результаты таких расчетов приведены в табл. 6.1. [c.81]


    Итак, энергия диссоциации молекулы С1 эквивалентна лишь пяти миллионным частям массы электрона. Химические реакции обычно сопровождаются энергетическими эффектами в несколько электронвольт, тогда как ядерные энергии относятся к диапазону миллионов электронвольт. 1 МэВ на молекулу эквивалентен 96,5 млн кДж моль , что находится далеко за пределами энергии всех химических реакций. Это объясняет, почему в химических реакциях можно пользоваться двумя независимыми законами сохранения-массы и энергии. Взаимные превращения этих свойств материи в химических реакциях неразличимы. В отличие от этого для ядерных реакций взаимные превращения массы и энергии-дело совсем обычное здесь следует пользоваться более общим законом сохранения массы и энергии. В любой ядерной реакции сумма энергии и произведения массы на величину (с-скорость света) для всех реагирующих частиц и их окружения не изменяется в процессе реакции. [c.410]

    Оно состоит в том, что вычисленная по отношению констант скорости прямой и обратной реакций константа равновесия реакции тримолекулярной рекомбинации атомов согласуется с опытным значением лишь при условии равенства стерического фактора реакции диссоциации молекул брома 100, что физически невероятно. При этом предполагается, что энергия активации тримолекулярной рекомбинации атомов брома равна нулю. Если использовать вычисленное нами значение энергии активации для этой реакции, то в выражение для константы скорости диссоциации войдет дополнительный множитель ехр(13,1-при котором достигается согласие с опытом. [c.124]

    К разрешению указанного противоречия можно подойти и с другой точки зрения. Выразив константы скорости прямой и обратной реакций через соответствующие динамические параметры, запишем [204] константу равновесия для обратимой реакции диссоциации молекул брома следующим образом  [c.124]

    Так как электропроводность определяется двумя факторами, а именно подвижностью носителей зарядов и их числом, то следующий этап исследования состоял в разделении этих переменных. Реакция диссоциации молекулы воды на ионы и подвижности водных ионов во льду и воде были изучены в работе Эйгена и Майер (1964). К тонкому кристаллическому образцу прилагалось электрическое поле такой величины, чтобы все заряды, которые образуются в образце, достигали электродов (измерялся ток насыщения). Величина тока насыщения в первом приближении пропорциональна константе скорости диссоциации молекулы Н2О на ионы и объему образца. Константу скорости рекомбинации они определили методом нарушения равновесия процесса диссоциации мощным электрическим импульсом, имеющим амплитуду 50—150 кв см [c.60]

    Понятно, что каждый атом или группа, содержащиеся в молекуле кислоты и снижающие в результате индукционного эффекта электронную плотность связи О—Н, тем самым уменьшают энергию, необходимую для отрыва протона молекулами воды. В этих условиях скорость реакции диссоциации увеличивается иначе говоря, константа скорости к тем больше, чем больше способность группы X притягивать электроны. [c.28]

    Так, реакция диссоциации молекул на атомы является мономолекулярной. Константы скорости реакций являются размерными величинами, размерность которых зависит от молекулярности реакции  [c.14]

    Реакция рассмотренного выше типа, т, е. реакция диссоциации молекулы А на В и С, состоит из двух стадий, которые могут определять ее скорость. Первой из них является активация, когда энергия столкнувшихся молекул превращается в энергию соответствующей степени свободы активированного комплекса, а второй является переход активированного комплекса через потенциальный барьер, что приводит к разложению. Как и на стр. 275, обозначим через й, константу скорости активации, а через А, — константу скорости разложения. Если скорость реакции определяется первой стадией, то константа Ад мала по сравнению с а если более медленной является вторая стадия, то, наоборот, константа мала по сравнению с Если перенос энергии происходит быстро, что, вообще говоря, имеет. место при достаточно высоких давлениях, то константа к будет [c.279]

    Формулы (39.7) и (39.8) применимы, например, к константам скорости реакций диссоциации и рекомбинации двухатомных молекул [c.200]

    Этот процесс можно рассматривать как диссоциацию молекулы ЗОа на две молекулы продуктов реакции, так как концентрация воды практически постоянна. В таком случае должна соблюдаться нейтральность раствора, поэтому концентрации НЗО и Н+ должны быть одинаковы во всех точках и оба иона будут диффундировать с одной и той же скоростью (о диффузии ионов см. раздел 1-2). [c.131]

    Если молекула в процессе адсорбции подвергается диссоциации, то показатель степени парциального давления соответствующего компонента равен /з. Если адсорбция или десорбция какого-либо из компонентов является самым медленным этапом реакции, то парциальное давление этого компонента исключается из знаменателя уравнения скорости реакции. [c.120]


    С помощью построенных потенциалов рассчитаны уровневые сечения и коэффициенты скорости реакций обмена и диссоциации для различных колебательных состояний реагирующих молекул. Оценена эффективность [c.99]

    Согласно радикально-цепной теории крекинг представляет собой сложный цепной процесс, который идет с участием свободных алифатических радикалов. Первичной реакцией крекинга всегда является распад молекулы алкана по связи С—С на два свободных алкильных радикала (может случиться распад по связи С—Н, но при температурах крекинга он в 10 —10 раз менее вероятен). Свободные радикалы вступают в реакции с молекулами алкана, продуктами распада, реагируют между собой и со стенками. Эти вторичные реакции идут легко по сравнению с реакцией зарождения цепей, которая требует энергии активации не меньшей энергии диссоциации связи и определяют развитие и обрыв цепей. Длина цепи определяется конкуренцией реакций развития и обрыва цепей и в различных случаях принимает различное значение. В стационарном состоянии длина цепи определяется отношением скоростей реакций развития и зарождения цепей. [c.25]

    В радикальных (не цепных) реакциях скорости реакций рекомбинации и диспропорционирования радикалов в дан ных условиях будут определять положение равновесий диссоциации молекул на радикалы и степень разложения исходных молекул алканов на молекулы более простых алкана п алкена. В самом общем случае можно представить, что распад достаточно сложной молекулы алкана на две молекулы алкана и алкена происходит по радикальному механизму в две стадии в первой стадии возникают радикалы, которые путем диспропорционирования дают конечные продукты. [c.210]

    СОМ будет ионизация адсорбированного водорода с переходом его в раствор. Таким образом, эта область потенциалов отвечает только стадии разряда (при катодном толчке) и ионизации (при анодном толчке), что позволяет исследовать кинетику одной этой стадии без наложения осложняющих эффектов, связанных с процессами рекомбинации или диссоциации молекул водорода. Изучение зависимости емкости двойного слоя и омического сопротивления (эквивалентного торможению па стадии разряда) от частоты наложенного тока в этой области потенциалов позволило Долину, Эрш-леру и Фрумкину впервые непосредственно измерить скорость акта разряда. Параллельные поляризационные измерения при небольщих отклонениях от равновесного потенциала, где неренапряжение еще линейно зависит от плотности тока, дали возможность найти скорость суммарного процесса и сопоставить ее со скоростью стадии разряда. Было установлено, что акт разряда протекает с конечной скоростью, причем ее изменение с составом происходит параллельно изменению скорости суммарной реакции. В то же время скорость стадии разряда всегда больше, чем скорость суммарной реакции (в 27 раз в растворах соляной кислоты и в И раз в растворах гидроксида натрия). Таким образом, акт разряда хотя и протекает с конечной скоростью, но не определяет скорости всего процесса выделения водорода на гладкой платине и не является здесь лимитирующей или замедленной стадией. [c.416]

    Далее, располагая знанием величин констант скорости реакций рекомбинации алкильных радикалов, мы можем на основании тепловых эффектов реакций диссоциации алканов на радикалы, значений теплоемкостей и химических постоянных оценить по формулам (151) или (152) величины констант равновесия реакций диссоциации алканов и вычислить константы скорости диссоциации алканов на радикалы, по найденным величинам констант скорости рекомбинации и константам равновесия. С другой стороны, существует возможность прямого вычисления констант скорости диссоциации алканов на радикалы по значениям энергий диссоциации связей С—С или С—Н в молекулах алканов по формуле 006) или (108). [c.261]

    Данные табл. 8.3 и 9.2 позволяют определить конкуренцию, которая может иметь место при инициировании радикалов путем реакг ций диссоциации молекул алканов и реакций молекулярного диспропорционирования алканов и алкенов. Впервые на возможность зарождения радикалов в результате реакций молекулярного ди пpot порционирования указал Семенов [76]. Такая возможность зарождения радикалов следует из сопоставления тепловых эффектов реакции диссоциации и молекулярного диспропорционирования. Реакций диссоциации молекул алканов являются более эндотермичными, чем реакции молекулярного диспропорционирования алканов и алкенов (см. табл. 8.3, 9,2). Поскольку обратные реакции протекают с практически нулевой энергией активации, то тепловой эффект реакций молекулярного диспропорционирования и диссоциации совпадает с энергиями активации этих реакций. Поэтому энергетически реакции молекулярного диспропорционирования могут быть выгоднее, чем реакции распада молекул алканов на радикалы. В то же время следует иметь в виду, что определение конкуренции этих реакций требует сравнения их скоростей. Оценим скорости зарождения радикалов по этим двум механизмам [М], м.д = К.А П] [О]. Предположим, что при нормальном давлении число молекул в одн( М литре совпадает с концентрациями исходных молекул и приближенно рачно 10 . Тогда [c.111]

    Предполагают, что при малых избыточных концентрациях Р2О7 и низких плотностях тока на катоде происходит разряд, аниона М(Р207) . Перед этим наблюдалась диссоциация комплекса с отщеплением одной молекулы лиганда, причем сделано допущение, что скорость реакции диссоциации мала. Если в электролите лиганд находится в большом избытке, то возможен прямой разряд аниона М Р207)2 . В ряде случаев следуег дополнить схему распадом анионных комплексов и образованием аквакомплексов в прикатодном слое. [c.243]

    В исследованном интервале температур наиболее оптимальной для процессов гидрирования является начальная тел1перату-ра 380° С. Дальнейшее повышение температуры не только не увеличивает скорость реакции гидрирования, но, напротив, снижает ее, так как при этом повышается роль конкурирующих реакций диссоциации молекулы. В тех термических реакциях алкенов, которые характеризуют только их распад, скорость крекинга увеличивается с ростом молекулярного веса алкена (табл. 43). [c.60]

    Примером больших и тщательно изученных реакционных серий могут служить реакции диссоциации молекул по связи С—С, структурная и геометрическая изомеризация производных циклопропана, циклобутана и циклобутена, элиминирование галоидводородов из галоидалканов, распад сложных эфиров. Для этих реакций можно проследить и теоретически объяснить тонкие эффекты влияния строения на скорость разложения. По-видимому, и в других случаях заслуживает внимания специальное изучение большого числа соединений, подчиняющихся одному механизму распада. [c.173]

    Неравенство (38.1) удовлетворяется тем лучше, чем меньше относительная концентрация реагируюпщх частиц и чем меньше вероятность реакции при их столкновениях. Примером реакций, удовлетворяющих соотношению (38.1), могут служить реакции диссоциации молекул при столкновениях с атомами. Изменение колебательной энергии молекулы, приводящее в итоге к диссоциации, происходит в указанных реакциях в результате столкновений реагирующих частиц с атомами среды, скорости которых распределены по Максвеллу. Это — частный случай реакции в равновесной среде. Средой при этом является подсистема поступательных степеней свободы частиц. Если в процессе реакции играют роль не только поступательные, но и другие степени свободы частиц, например вращательные, то к среде, в которой происходит реакция, относятся подсистемы всех таких степеней свободы. Не останавливаясь подробнее на условиях равновесия той или иной конкретной среды в процессе реакции, отметим лишь, что для такого равновесия наряду с неравенством (38.1) должны быть выполнены и другие неравенства, означаюпще быструю релаксацию среды по сравнению со скоростью реакции. [c.191]

    Трансферрин, связанный с Ре + или Сг +, обладает большим сродством к рецепторам ретикулоцитов, чем апотрансферрин [94, 95]. Этот эффект частично зависит от природы закомплексованного иона металла и, по-видимому, обусловлен более высокой константой скорости реакции диссоциации комплекса ретикулоцит — трансферрин в том случае, когда белок не содержит металла. Таким образом, молекулы трансферрина, содержащие Сг + или Ре +, имеют более продолжительное время жизни на поверхности ретикулоцита, при этом среднее время жизни молекулы белка на поверхности клетки, вероятно, составляет 5—10 мин [4]. Трансферрины, содержащие марганец, медь или цинк, ведут себя подобно апотрансферрину [93]. Яндл и Катц, [96] и Корнфельд [94] рассчитали, что на поверхности ретикулоцита имеется около 50 ООО рецепторных центров, так что в условиях насыщения около 2% площади поверхности клетки занято трансферрином. Бейкер и Морган [97] подсчитали, что с ретикулоцитом может быть связано 500 ООО молекул белка. [c.355]

    Выражение (3.69) соответствует реакции первого порядка, скорость которой не зависит от [С[ или [Х-]. Более того, константа скорости реакции первого порядка равна константе скорости реакции диссоциации акво-комплекса. Например, для систем, в которые введена изотопная метка, к должна быть равна скорости обмена молекул воды. Волее того, если под символом Х подразухмеваем ряд реагентов, то одна и та же предельная скорость для всех реагентов долиша достигаться при достаточно высокой концентрации X". [c.176]

    Рассмотрим реакции, протекающие в плотных газах или жид-костях, когда коэффициент трения или частота столкновений реагирующих частиц с TqjMo raTHHMH существенно превышают юо. В этом случае на фазовой плоскости отсутствуют замкнутые траектории и, как было показано в предыдущем разделе, функция распределения подчиняется уравнению (2.22). В данном разделе будут определены скорости реакций диссоциации и рекомбинации в молекулу с помощью разработанного в первой главе аппарата построения неравновесных решений уравнения ФП /22/. [c.86]

    В ряде случаев оптимальные температуры для проведения гетерогенных каталитических реакций совпадают с областью температур, при которых наблюдается активированная адсорбция реагирующих веществ. Например, температуры, при которых ведется процесс синтеза аммиака, совпадают с температурами, при которых наблюдается активированная адсорбция азота. Как показывают опыты с изотопами азота, молекула азота при активированной адсорбции не расщепляется на атомы. Изо-тоииый обмен N2" -N2 ->2N N " на катализаторе синтеза аммиака прн температурах синтеза хотя и идет, но значительно медленнее самого синтеза. Такой обмен может идти только путем разрыва связей в молекулах азота. Но этот процесс медленный, поэтому он не может быть ответственным за более быстрый процесс синтеза аммиака. Следовательно, в реакции син-тезг аммиака атомы азота участия не принимают, скорость же процесса активированной адсорбции азота, не вызывающего диссоциации молекулы азота на атомы, совпадает со скоростью реакции синтеза аммиака. [c.311]

    Также при общем повышении давленид скорость реакции возрастает Ь 4 раза. В то время как реакцЦга диссоциации, т. е. те, которые стремятся увеличивать число молекул в данном пространстве, где происходит диесоциация, будут поставлены в неблагоприятные условия от повышения давления, наоборот — реакции, которые стремятся сократить число молекул, первоначально находившееся Ъ данном-объеме, под влиянием давления увеличивают свою скорость. Давление также будет более способствовать реакциям, вызывающим разрыв цепи посредине, нежели на краях углеводородной цепи. [c.269]

    Макроскопическая скорость реакции соизмеримо меньше макроскопической скорости релаксации. При этом микроскопические скорости реакции больше микроскопических скоростей релаксации уже для многих квантовых уровней (а не для некоторых, как было раньше), что означает нарушение равновесного энергетического распределения пе только вблизи порога, но и на нижних колебателып.тх уровнях. Может случиться так, что среди релаксационных процессов имеется процесс, обеспечивающий быстрьп обмен энергией и выравнивание распределения на нижних уровнях. В этом случае распределению по этим состояниям все же можно придать вид равновесной функции Больцмана, н6 не по обычной поступательной температуре Т, а по некоторой температуре Т. Она определяется предварительно из уравнений, учитывающих текущую концентрацию молекул и изменение их энергий в ходе процесса. Тогда уравнения сводятся к обычным Арренну-совым, по содержат не одну, а две температуры, характеризующие как фиктивное полное равновесие, так и фактическое равновесие по быстрой подсистеме. Для реакции мономолекулярного распада (диссоциации) таким быстрым процессом, устанавливающим равновесие, может явиться, например, резонансный обмен колебательными квантами. Зависимость макроскопического коэффициента скорости от значений Т, Т имеет вид [12] [c.98]

    Суммирование этих уравнений дает Hj Gl = 2HG1, откуда следует, что реакция образования хлористого водорода может дойти до равновесия при любой концентрации активных центров С1 и Н, и так как энергия активации указанных выше процессов значительно меньше энергии активации процесса lj = 2С1 (равной теплоте диссоциации молекул lj 57,3 ккал), то за время реакции концентрация активных центров существенно не изменится. Таким образом, рассматриваемая реакция идет практически при неизменном числе частиц, из чего можно заключить, что скорость детонации смеси H -Ь ia не будет зависеть от давления. Как видно из данных табл. 13, это заключение подтверждается на опыте, так как при повышении начального давления смеси с ро=200 тор до Ро = 760 тор скорость детонации изменяется всего лишь на 0,7%. [c.244]

    В отличие от а,а-замещенных дифенилалканов скорость обмена 1,2-дифенил этана в избытке бензола е возрастает, но, пропорциональна квадрату концентрации 1,2-дифенилэтана. Этот факт, а также отсутствие следов этилбензола в катализате указывает на то, что в данном случае, по-видимому, отсутствует стадия диссоциации молекулы до карбокатиона. Вероятно, образуется протонированный комплекс дифенилалкана, взаимодействие которого с другой нейтральной молекулой лимитирует данную реакцию. [c.217]

    Вначале образуется пара ионов С4Н9р (а), окруженная молекулами среды. Такая ионная пара называется контактной. Разделение ионов приводит к образованию сольватно разделенной ионной пары (б), в которой ионы еще достаточно сильно взаимодействуют. Далее происходит диссоциация, приводящая к образованию независимых друг от друга ионов (Ь). Ион, находящийся в контактной паре, наименее активен константа скорости его реакций с молекулами углеводорода на несколько порядков меньше, чем для свободного иона. [c.163]

    Электролиз щироко применяется при промышленном получении fнoгиx металлов (К, N3, Са, Mg, А1). В промьшшенных электролизерах под воздействием подводимого электрического тока на одном из электродов выделяются газовые образования. В результате электролитической диссоциации молекул на электродах происходит рост газовых пузырьков, которые изолируют часть поверхности элеюрода. Это приводит к перераспределению потенциала на электроде и изменяет скорость протекания химической реакции. Вследствие этого происходит увеличение разности потенциалов, что ведет к повьппению энергозатрат. Для эффективного управления производством необходим учет влияния пузырьков на распределение электрического поля. Математическое моделирование позволяет провести расчет и анализ электрического поля [1]. [c.118]

    Расчеты проводились для трех значений температуры 2000, 3000,5000 К. Полученную в результате расчетов зависимость коэффициента скорости реакции рекомбинации Н + Н + Н-> Н2 + Нот температуры можно приближенно аппроксимировать выражением /Срек = 7" . Однако это значение коэффициента скорости нельзя непосредственно сравнивать с экспериментальными данными, так как при расчете рассматривается только элементарный акт рекомбинации, в условиях же эксперимента происходят дезактивации и обратная диссоциация образующихся молекул. Реакции диссоциации и дезактивации молекул водорода при столкновениях их с атомами Н под- [c.102]

    Оригинальная концепция гетерогенного зарождения цепей И, действия ингибиторов в термическом крекинге алканов была развита в последние годы [108, 65]. Согласно этой теории, зарождение цепей происходит на стенках реакционного сосуда путем необратимого распада молекул алкана на радикалы с выбросом последних в объем, где развиваются цепи. Эти необратимые химические реакции алкана с поверхностью обусловлены наличием свободных валентностей на некаталитических стенках, подобных кварцевой поверхности. В результате этого химического взаимодействия алкана со свежей поверхностью в начальной стадии возникает в зоне крекинга концентрация свободных радикалов, превыщающая равновесную. Это определяет более высокую скорость в начале крекинга. Начальная стадия крекинга протекает как неравновесная, при этом некаталитическая поверхность выступает на положении инициатора цепного распада. Однако по мере протекания реакции свободные валентности поверхности закрываются и стенки утрачивают свою химическую активность. Вследствие этого концентрация радикалов уменьшается довольно быстро до квазистационарной, а скорость к )екинга резко падает и затем изменяется по закону реакций первого порядка. На этих более глубоких стадиях крекинга стенки способны только к участию в обратимых процессах диссоциации молекул алканов и рекомбинации образованных радикалов, в результате которых устанавливается квазиравковесная концентрация радикалов, определяемая тер- [c.54]


Смотреть страницы где упоминается термин Скорости реакций диссоциации молекул: [c.256]    [c.284]    [c.458]    [c.169]    [c.229]    [c.301]    [c.256]    [c.87]    [c.409]    [c.220]   
Физическая химия растворов электролитов (1950) -- [ c.0 ]

Физическая химия растворов электролитов (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диссоциация и скорость реакции

Реакции диссоциации

Самосогласованный метод вычисления вклада вращательной и колебательной диссоциации в константу скорости реакции. Учет притяжения молекул

Скорости реакций диссоциации молекул н Ионов

Скорость молекул



© 2025 chem21.info Реклама на сайте