Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модифицирование адсорбентов химическое

    Адсорбционные свойства силикагеля регулируют варьированием его пористой структуры и изменением химической природы поверхности. Расширение узких пор между глобулами, являющихся причиной геометрической неоднородности силикагеля, называется геометрическим модифицированием. Изменение химической природы поверхности адсорбента путем присоединения к ней различных химических соединений называется химическим модифицированием. [c.88]


    В лекциях 4 и 5 были приведены примеры адсорбционного и химического модифицирования поверхности адсорбентов с жестким скелетом — непористых и широкопористых саж и кремнеземов. Если модифицирующие молекулы сильно адсорбированы, имеют вытянутую или плоскую конфигурацию, а также если химически прививаемые к поверхности кремнезема группы обладают большой жесткостью и ограниченной конформационной подвижностью, модифицированный адсорбент также можно считать инертным. Если же к поверхности кремнезема привиты длинные н-алкильные цепи, то в результате их конформационной подвижности, особенно при высоких температурах, адсорбция может сопровождаться абсорбцией, т. е. объемным поглощением молекул, проникающих между этими цепями. Это же может происходить и при адсорбционном модифицировании адсорбентов-носителей слабо связанными с поверхностью конформационно подвижными слоями полимеров. [c.128]

    Тестирование колонок, заполненных обращенно-фазовыми адсорбентами (химически алкил-модифицированные силикагели типа С8, С16 и С18), лучше производить смесью "бензол-нафталин-антрацен" или "нафталин-антрацен-м-терфенил" при использовании элюента "ацетонитрил-вода" в соотношении от 60 40 до 75 25 по объему в зависимости от содержания углерода в адсорбенте. Для сорбентов, содержащих 12-14% углерода, предпочтительнее элюент "ацетонитрил-вода" в соотношении 55 45. При содержании углерода 16-18% и выше используются элюенты с содержанием ацетонитрила, большим 70% по объему. Расчет эффективности ведется по антрацену или м-терфенилу. При подготовке колонки к анализу беиз(а)пирена расчет эффективности целесообразнее проводить по бенз(а)пирену (рис. 2.6). В этом случае используется элюент "ацетонитрил-вода" в соотношении 75 25 или 80 20. [c.22]

    Уменьшение адсорбции азота, криптона и других адсорбатов на единицу поверхности модифицированных адсорбентов [363, 339] указывает, что принятое ранее при расчете удельных поверхностей адсорбентов допущение о постоянстве молекулярных площадок адсорбата является неверным. На таких адсорбентах не размеры молекулы адсорбата определяют величину молекулярной площадки, а топография самой химической поверхности адсорбента становится определяющим фактором. Молекулярные площадки существенно возрастают по мере замещения ОН-групп на атомы фтора или органические радикалы. Так как удельная поверхность 5 = Ыа, ( 1о при модифицировании мало изменяется, а адсорбция а ,, соответствующая покрытию мономолекулярным слоем, уменьшается, то формальным следствием этого является резкое возрастание молекулярных площадок соо адсорбата. Следовательно, можно говорить лишь о формальном применении уравнения изотермы адсорбции БЭТ для модифицированных адсорбентов. Определение удельной поверхности модифицированных адсорбентов методом БЭТ, даже по адсорбции азота или благородных газов, не является надежным из-за незнания величин молекулярных площадок, которые зависят от природы поверхности. [c.172]


    Уменьшение адсорбции азота, криптона и других адсорбатов на единицу поверхности модифицированных адсорбентов [6, 14] указывает, что принятое ранее ири расчете удельных поверхностей адсорбентов допущение о постоянстве молекулярных площадок адсорбата неверно. На таких адсорбентах не размеры молекулы адсорбата определяют величину молекулярной площадки, а топография самой химической поверхности адсорбента становится определяющим фактором. Молекулярные площадки существенно возрастают по мере замещения ОН-групп на атомы фтора или органические радикалы. [c.152]

    Модифицирование адсорбентов монослоями сильно-адсорбирующихся веществ позволит, по-видимому, сильно разнообразить химическую природу их поверхности, устранив вместе с тем основной недостаток газо-жидкостной хроматографии — летучесть жидких фаз при высоких температурах хроматографического опыта. Из рис. 6 следует высокая термостабильность модифицирующего монослоя по сравнению термостабильностью нанесен- [c.206]

    Итак, из сказанного следует, что величина молекулярной площадки является функцией как природы поверхности адсорбента, так и природы адсорбата, т. е. расчетное значение о>о может быть в несколько раз больше ее геометрических размеров. Поэтому при определении удельной поверхности химически модифицированных адсорбентов следует очень тщательно подходить к подбору адсорбата, обратив при этом особое внимание на чувствительность его адсорбции химически неоднородными поверхностями. Экспериментально показано, что наиболее приемлемы для определения 5 адсорбентов с химически гетерогенной поверхностью инертные вещества, т. е. безразличные к поверхностному покрову твердого тела молекулы вещества. [c.153]

    Имея возможность проводить калориметрические исследования теплот адсорбции, мы проделали работы для сопоставления результатов хроматографических и калориметрических исследований этой важной физикохимической характеристики адсорбционных систем. Для этого были получены хроматограммы различных паров на модифицированных адсорбентах, а также на тонких порошках твердых тел, введенных в крупнопористые носители со слабо адсорбирующей поверхностью для быстрого физико-химического исследования этих адсорбентов. [c.38]

    В работах [3—6] было указано на возможность применения геометрических и химически модифицированных адсорбентов с малой и слабо адсорбирующей поверхностью и однородной широкопористой глобулярной структурой скелета как непосредственно в газоадсорбционном варианте хроматографических анализов, так и в качестве носителей тонких порошков твердых тел. [c.38]

    В данном сообщении предпринята попытка ответить на вопрос о том, почему и в каких случаях, одни углеводороды адсорбируются лучше илп хуже других, как влияет иа их адсорбционные свойства природа адсорбента, химическое модифицирование его поверхности и модифицирование его геометрической структуры, т. е. структуры пор. Такие исследования адсорбционных свойств индивидуальных углеводородов и соответствующие исследования статической адсорбции их смесей необходимы для дальнейшего развития теории и практики хроматографического разделения. [c.45]

    ИЗМЕНЕНИЕ ХИМИЧЕСКОЙ ПРИРОДЫ ПОВЕРХНОСТИ АДСОРБЕНТОВ (МОДИФИЦИРОВАНИЕ АДСОРБЕНТОВ) [c.96]

    Наиболее эффективным способом дезактивации поверхности носителя является химическое модифицирование силанами, подобное химическому модифицированию адсорбентов. Несмотря на значительное снижение специфичности, химическое модифицирование [c.153]

    МОДИФИЦИРОВАНИЕ ПОВЕРХНОСТИ АДСОРБЕНТА ХИМИЧЕСКИМИ РЕАКЦИЯМИ [c.343]

    Адсорбент, наполняющий колонку, должен обладать рядом свойств необходимой селективностью, достаточной механической прочностью, химической инертностью к компонентам смеси и быть доступным. Практически в качестве адсорбентов используются оксид алюминия, силикагели, активированные угли, пористые полимеры на основе стирола, дивинилбензола и т. д. и синтетические цеолиты. Широко используют модифицированные адсорбенты, которые получают обработкой исходных адсорбентов растворами кислот, щелочей, неорганических солей и т. д. Выбор адсорбента зависит от агрегатного состояния фаз, методики хроматографирования и других факторов. [c.326]

    ХИМИЧЕСКОЕ МОДИФИЦИРОВАНИЕ АДСОРБЕНТОВ [c.189]

    Модифицирование неорганических адсорбентов химическими реакциями, адсорбционным нанесением монослоев органических молекул и макромолекул и полимеризацией нанесенных мономеров. [c.68]

    Геометрическое и химическое модифицирование адсорбентов для газовой хроматографии, IV. Газовая хроматография на стеклянных капиллярных колонках с химически модифицированной поверхностью. [c.83]

    Описывается метод определения деструкции органич. в-в., химически модифицирующих слоев на поверхности адсорбентов и носителей для ГХ. Определяется максим, т-ра, при которой можно применять некоторые химически модифицированные адсорбенты. [c.136]


    Химическое модифицирование адсорбентов. Химическое модифицирование гидроксилированной поверхности кремнеземов описано в разд. 3.5. Для снижения адсорбционной способности кремнезема его обычно обрабатывают хлорсиланами [20]. В лабораторных условиях для этой цели лучше использовать гексаметилдисилазан, так как он менее летуч (температура кипения 126°С) и менее токсичен, чем, например, триметилхлорсилан и диметилдихлорсилан. [c.17]

    В курсе приведены многочисленные примеры практического применения главным образом газовой и молекулярной жидкостной хроматографии на адсорбци-онно или химически модифицированных адсорбентах для анализа углеводородов, их производных и гетероциклических соединений. Особое внимание уделено анализу вредных примесей, разделению углеводов, стероидов, гликозидов, азолов, азинов, а также таких важных галогенпроизводных, как фреоны и пестициды. Адсорбция микотоксинов, представляющих собой одну из серьезнейших пищевых и кормовых проблем, рассматривается как в аспекте хроматографического их анализа, так и в аспекте хроматоскопического исслв1Дования структуры их молекул. В конце курса приведены примеры адсорбции и хроматографии синтетических и природных макромолекул. Здесь рассматривается иммобилизация некоторых ферментов и клеток (например, для осахарнвания крахмала, изомеризации глюкозы, для решения проблем искусственной почки), а также вопросы хроматографической очистки вирусов, в частности, вирусов гриппа и ящура. [c.4]

    Исключительно важное значение химия поверхности адсорбентов и носителей имеет в газовой и жидкостной хроматографии для анализа сложных смесей, препаративного выделения чистых веществ и управления технологическими процессами. Химия поверхности играет важную роль и в процессах, протекающих в биологических системах. К ним относится, в частности, взаимодействие биологически активных веществ, в том числе лекарственных препаратов, с рецепторами — местами их фиксации в организме. Изучение модифицирования поверхности необходимо для решения вопросов совместимости искусственных материалов с биологическими. Химическое модифицирование адсорбентов применяется при разработке эффективных методов вывода из крови разного рода токсинов (гемосорбция). Прививка к поверхности крупнопористых адсорбентов и носителей соединений с определенными химическими свойствами необходима для иммобилизации ферментов, их хроматографического выделения и очистки, а также для иммобилизации клеток. Иммобилизованные ферменты и клетки эффективно используются в промышленном биокатализе, обеспечивая высокую избирательность сложных реакций в мягких условиях. Очистка и концентрирование вирусов гриппа, ящура, клещевого энцефалита и других для получения эффективных вакцин требует применения крупнопористых адсорбентов с химически модифицированной поверхностью. [c.6]

    В первой части этого курса были рассмотрены различные по химической природе и геометрической структуре адсорбенты, применяемые в молекулярной газовой и жидкостной хроматографии от одноатомного адсорбента с однородной плоской поверхностью графитированная термическая сажа) до непористых и микропористых солей, кристаллических микропористых и аморфных оксидов (на примере кремнезема) и органических пористых полимеров, а также способы адсорбционного и химического модифицирования адсорбентов. При этом были рассмотрены химия поверхности и адсорбционные свойства этих адсорбентов — поверхностные химические реакции, газовая хроматография, изотермы и теплоты адсорбции и происходящие при модифицировании поверхности и адсорбции изменения в ИК спектрах. Уже из этой описательной части курса видно, что свойства системы газ — адсорбент в сильной степени зависят как от химии поверхности и структуры адсорбента, так и от природы и строения адсорбируемых молекул, а также от их концентрации и температуры системы. Приведенные экспериментальные данные позволили рассмотреть и классифицировать проявле- [c.126]

    Подробно изучено влияние длины углеводородной цепи неспецифического адсорбента на удерживание и селективность разделения н-алканов, полиядерных ароматических соединений (ПАС) и алициклических соединений. Для изучения были взяты адсорбенты, химически модифицированные привитьЕми углеводородными цепями Сь С и С18. Удерживание ПАС и алканов с водно-метанольным элюентом значительно больше на адсорбенте с С18, чем на адсорбентах с С1 и Сз. Это различие в удерживании меньше при работе с индивидуальным органическим элюентом, содержащим ацетонитрил. Однако изучение влияния длины углеводородной цепи, привитой к поверхности силикагеля, нельзя рассматривать, как указывалось выше, отдельно от изучения влияния поверхностной концентрацш привитых групп. [c.310]

    По классификации Киселева [382], рассмотренные нами химически модифицированные адсорбенты можно отнести к двум группам. К первой принадлежат силикагели с химически насыщенной поверхностью — модифицированные фтором, алкильными и алифатическими группами. Поверхность таких адсорбентов неспецифически взаимодействует не только с молекулами, имеющими л-связи (ароматические углеводороды, азот, ненасыщенные углеводороды), но и с молекулами, имеющими свободные электронные пары (вода, спирты, эфиры и др.). Так как доля дисперсионной компоненты взаимодействия в адсорбции полярных молекул [c.177]

    По классификации A.B. Клселева, рассмотренные химически модифицированные адсорбенты можно отнести к двум группам. К первой принадлежат силикагели с химически насьпценной поверхностью — модифицированные фтором, алкильными и алифатическими [c.374]

    По классификации Киселева [21], рассмотренные нами модифицированные адсорбенты можно отнести к двум группам. Первая группа — адсорбенты с химически насыщенной поверхностью — кремнеземы, модифицированные фтором, алкильными и алифатическими группами. Поверхность таких адсорбентов неспецифически взаимодействует не только с молекулами неполярных веществ, но также с молекулами, имеющими я-связи (ароматические углеводороды, азот, ненасыщенные углеводороды) и с молекулами, имеющими свободные электронные пары (вода, спирты, эфиры и др.). Так как доля дисперсионной компоненты взаимодействия в адсорбции полярных молекул мала, то все они на таких поверхностях адсорбируются плохо. В связи с тем, что органические радикалы отодвигают молекулы адсорбата от силоксановых групп кремнезема, являющихся основными центрами дисперсионного взаимодействия, то адсорбция молекул, адсорбирующихся только по дисперсионному механизму на таких поверхностях, также меньше, чем на гидроксилированном силикагеле. [c.163]

    Наряду с изучением адсорбцпои- t пых свойств химически модифицированных адсорбентов большое значе- [c.68]

    При химическом модифицировании адсорбента изменяется природа поверхностных химических реакций. В промышленности и в лабораторной практике получили распространение реакции солирования поверхностных гидроксильных групп. Широко используют реакции с триметилхлорсиланом, диметилдихлорсиланом и гекса-метилдисилазаном [2], Триметилхлорснлан успешно, используют для уменьшения адсорбционной активности силикагелей, пористых стекол, диатомитовых твердых носителей и Других кремнеземных адсорбентов и носителей. [c.96]

    Модифицированные адсорбенты. Одним из перспективных направлений изменения и целенаправленного регулирования сорбционных характеристик промышленных адсорбентов является химическое модифицирование их иоверхности. Часто, учитывая наличие гидроксильного покрова на поверхности силикагелей, активного оксида алюминия, цеолитов, в основе ука-занногр процесса лежат химические реакции гидроксильных групп на поверхности твердофазной пористой матрицы (по механизму электрофильного или нуклеофильного замещения) с подводимыми к ним реагентами-модификаторами. Замещение гидроксилов или протона в гидроксилах на другие функциональные группы (аминные, сульфидные, фосфор-, ванадий-, хром-, титансодержащие и др.) позволяет в широких пределах регулировать активность сорбента ио отношению к разным адсорбатам, создавать адсорбенты с избирательными характеристиками и с новыми свойствами. Среди новых методов модифицирования одним из наиболее иерсцективных является метод молекулярного наслаивания, обеспечивающий поатомную химическую сборку на иоверхности твердого тела мономо-лекулярных и многослойных поверхностных наноструктур. Разработано аппаратурное оформление процесса молекулярного наслаивания в установках проточного типа и при пониженном давлении. [c.262]

    В некоторых областях применения газоадсорбционная хроматография имеет большие преимущества перед газо-жидкостной хроматографией. Зто относится не только к успешно практикуемому уже в течение десятилетий разделению газов и паров низкокипящих соединений, но также к разделению дейтериро-ванных и недейтерированных веществ и изомеров. Особенно надо подчеркнуть возможность сочетания преимуществ газоадсорбционной и газо-жидкостной хроматографии, достигаемого путем модифицирования и импрегнирования поверхности адсорбентов. Это позволяет при той же степени разделения использовать более короткие колонки при меньших временах анализа (см, например, [11]). Однако здесь мы не рассматриваем модифицированные адсорбенты ввиду плохой воспроизводимости данных при использовании таких фаз. Тем не менее модифицирование позволяет в ряде случаев получить результаты, сравнимые с достигаемыми при газо-жидкостной хроматографии. При этом решающую роль играет химическая и геометрическая однородность поверхности. Поскольку для применявшихся ранее адсорбентов этого большей частью не удавалось добиться, укажем лишь несколько улучшенных адсорбентов. [c.210]

    В этом параграфе мы рассмотрим несколько более детально теорию неидеальной, но еще равновесной газовой хроматографии, т. е. случай искривленных, не подчиняющихся уравнению Генри равновесных изотерм адсорбции или растворения, которые выше (см. стр. 521 сл.) были рассмотрены только качественно. В предыдущем параграфе было показано (стр. 549), что, выбирая оптимальную скорость газа-носителя в колонке вблизи минимума кривой ван Димтера, можно значительно уменьшить диффузионное и кинетическое размывание хроматографической полосы, т. е. приблизиться к предельному случаю равновесной хроматографии. В этом же направлении влияет соответствующее геометрическое и химическое модифицирование адсорбентов и носителей. Поэтому мы рассмотрим теперь искажения хроматографической полосы в рамках теории равновесной хроматографии, предполагая, что в соответствующих газо-хроматографических опытах соблюдены условия, практически устраняющие диффузионное и кинетическое размывания хроматографической полосы. В этих условиях исследование искажений хроматографической полосы позволяет получить сведения об изотермах адсорбции или растворимости и о многих других важных термодинамических свойствах адсорбционных систем и растворов. [c.552]

    Устранение геометрической неоднородности могло быть осуществлено геометрическим модифицированием адсорбентов или созданием достаточно однородно и ши-рокопористых или даже непористых адсорбентов. Устранение химически активных мест на поверхности или создание новых групп, полезных для того или иного хроматографического разделения, могло быть осуществлено химическим модифицированием, т. е. прививкой или прочным привязыванием к поверхности тех или иных групп атохмов, способных быть полезными в газо-хрома-тографическом разделении. [c.468]

    Наиболее эффективным способом деактивации поверхности носителя является химическое ее модифицирование. Модифицирование поверхности носителя производными силанов, подобное химическому модифицированию адсорбентов и наполнителей [112, 113], было проведено впервые в 1958 г. [104, 114]. Бохемен, Лэнжер, Перрет и Парнелл [115] для химического модифицирования поверхности носителя использовали гексаметилдисилазан. Позднее были предложены различные способы [116—118] химического модифицирования этим веществом. Наибольший успех при использовании модифицированного носителя был достигнут при отделении примеси этанола от метанола [119]. Химическая связь —О—Si—ORg устойчива при температуре до 360°С [120]. [c.94]

    Поскольку химически модифицированные неорганические ад-сорбенты-носители находят применение главным образом в об-ласти жидкостной хроматографии, они в основном рассмотре-N51 ны во второй части этой книги. Здесь будет, однако, отмечено ч успешное химическое модифицирование адсорбентов и стенок капиллярных колонн и для газоадсорбционной хроматографии. [c.17]


Смотреть страницы где упоминается термин Модифицирование адсорбентов химическое: [c.589]    [c.212]    [c.720]    [c.26]    [c.23]    [c.23]    [c.247]    [c.10]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.70 , c.71 , c.106 , c.125 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбент химическое модифицирование поверхности

Адсорбенты для жидкостной адсорбционной хроматографии и их динамическое и химическое модифицирование

Изменение химической природы поверхности адсорбентов (модифицирование адсорбентов)

Модифицирование поверхности адсорбента химическими реакциями

Щербакова. Химическое модифицирование поверхностей адсорбентов



© 2025 chem21.info Реклама на сайте