Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие непрямое электронное спин-спиново

    По непрямому электронному спин-спиновому взаимодействию можно сделать ряд общих выводов, которые следует учитывать при интерпретации спектров. В отличие от расщепления, вызванного химическим сдвигом, расщепление за счет взаимодействия спинов ядер не зависит от величины внешнего поля Н . Влияние непрямого спин-спинового взаимодействия может сказаться на нескольких связях. Однако с увеличением числа связей между взаимодействующими ядрами оно быстро уменьшается. Если взаимодействующие ядра связаны более чем тремя а-связями, то расщепления чаще всего не наблюдается. Напротив, до девяти связей дальнего порядка можно обнаружить в том случае, если их взаимодействие происходит по я-связям. При взаимодействии ядер, характеризующихся равными химическими сдви гами, расщепления в спектре не наблюдается (например, при взаимодействии протонов СНз-группы). Вне пределов этого условия величины констант взаимодействия зависят от порядка связей и их геометрии в молекуле. Отметим, что они зависят и от длины связей, величины валентного угла, типа гибридизации в атоме, осуществляющем связь, и от электроотрнцательности имеющихся заместителей. [c.259]


    Каков же механизм спин-спинового взаимодействия через электроны химической связи Упрощенно его можно представить так. Электроны атомов водорода и дейтерия в молекуле стремятся сориентироваться таким образом, чтобы система спинов имела возможно меньшую энергию. Это будет в том случае, если векторы магнитных моментов электронов будут антипараллельны векторам магнитных моментов ближайших к ним ядер. Кроме того, оба электрона, образующие ковалентную связь, стремятся сориентировать свои спины, а следовательно, и векторы магнитных моментов, также антипараллельно. В результате этого два вектора магнитных моментов ядер в молекуле Н—О стремятся расположиться антипараллельно. Образно говоря, вследствие непрямого спин-спинового взаимодействия каждое из ядер знает , в каком спиновом состоянии находится другое магнитное ядро, причем передатчиком информации служат связующие электроны. Именно поэтому спиновая плотность электрона, обеспечивающего такую связь ядер, должна отличаться от нуля, что возможно только в случае электронов, имеющих -характер. [c.79]

    Ранее отмечалось, что диполь-дипольное взаимодействие не вызывает никакого расщепления резонансных линий в спектрах ЯМР жидкостей, однако во многих случаях наблюдается расщепление, обусловленное непрямым спин-спиновым взаимодействием, которое передается через электроны связи. Непрямое (или косвенное) спин-спиновое взаимодействие называют еще скалярным, так как оно не зависит от ориентации спинов. Механизм [c.29]

    На частоту резонанса данного ядра А влияет не только электронное окружение, но и соседние магнитные ядра. Если спин соседнего магнитного ядра X направлен вдоль поЛя постоянного магнита, то он усиливает поле в месте расположения ядра А, если-против, то ослабляет его на ту же величину. Принято различать прямое и непрямое спин-спиновое взаимодействие магнитных ядер. Прямое взаимодействие передается через пространство. Оно является основной причиной уширения линий ЯМР вязких растворов и особенно твердых тел. Прямое спин-спиновое взаимодействие усредняется при быстром движении молекул в растворе или расплаве вещества. Непрямое спин-спиновое взаимодействие передается в пределах молекулы по системе связей и не усредняется при быстром молекулярном движении. [c.292]

Рис. 5.21. Модель передачи непрямого спин-спинового взаимодействия в углеводородном фрагменте (короткие стрелки обозначают спины ядер, длинные-электронов связей) Рис. 5.21. Модель передачи <a href="/info/361298">непрямого спин-спинового взаимодействия</a> в <a href="/info/1512687">углеводородном фрагменте</a> (короткие стрелки обозначают спины ядер, <a href="/info/477831">длинные-электронов</a> связей)

    Непрямое спин-спиновое взаимодействие через обменно-связанные магнитные моменты электронов также дает сведения о химических, связях. [c.46]

    Непрямое электронное спин-спиновое взаимодействие. При достаточно высокой разрешаюи1,ей способности спектрометра ЯМР становится заметным влияние на спектр других локальных полей. Последние возникают вследствие ферми-контактного взаимодействия ядерного спина, ориентированного во внешнем поле Н , со спином электрона. Это приводит к возникновению электронной поляризации, которая вновь воздействует на соседние ядра (сверхтонкое взаимодействие). Вследствие существования 2/ + 1 различных возможностей ориентирования спина ядра А 8 поле (см. стр. 249) по этому механизму расщепления, в м сте нахождения соседнего ядра X возникают точно такие же многочисленные локальные ПОЛЯ вызывающие расщепление сигнала. Это сверхтонкое расщепление характеризуется константой сверхтонкого взаимодействии J, величину которой измеряют в герцах. В простых случаях она соответствует расстоянию между соседними линиями в мультиплете сигнала (рис. 5.23, б). Если п эквивалентных ядер А взаимодействуют с ядром X, то на ядро А оказывают воздействие 9.nJ + 1 различных дополнительных полей и мультиплетность расщепления сигнала оказывается равной [c.258]

    В спектрах соединений, содержащих неэквивалентные протоны (или другие ядра), часто наблюдается дополнительное расщепление линий. Например, в спектре этанола, снятом при высоком разрешении, каждая компонента обладает тонкой структурой (рис. 50, б). Расщепление имеет порядок 10 гц. Этот эффект объясняют возможностью непрямого взаимодействия ядерных спинов через электроны в молекуле магнитный момент ядра со спином стремится ориентировать снины расположенных поблизости электронов, которые в свою очередь ориентируют спины других электронов, а следовательно, и снины других ядер. Энергии спинового взаимодействия, характеризуемые константой спин-спиновой связи 7, приводят к расщеплению резонансных линий. Нанример, спины протонов группы СНг в R H2OH могут взаимодействовать со спином протона группы ОН (рис. 53). Имеются три возможные конфигурации СНг-грунпы, обозначаемые f f, f или f и j , которые приводят к расщеплению резонансной линии протона группы ОН на три компоненты, расположенные на расстоянии / гц. Средняя компонента наиболее сильная, поскольку статистические веса этих трех конфигураций относятся как 1 2 1. [c.230]

    При высоком разрешении наблюдается сверхтонкая (мульти-плетная) структура линий ЯМР. Она возникает вследствие м.аг-нитного взаимодействия между ядрами, передаваемого через электроны связи, т. е. непрямого спин-спинового взаимодействия. Так, в СШаС— H lj протон группы СН может находиться в двух состояниях — со спином + /г и —Vj. Поэтому линия протонов соседней группы СНг расщепляется на две. В группе Hj возможны три неэквивалентных состояния пары протонов + /, +Ч,., + /2, — /2 ( — /2, + /2) — /2, — /2. Линия протона СН испытывает триплетное расщепление (рис. 5.25). [c.169]

    На рис. 5.31 показан спектр ПМР 1,1,2-трихлорэтана, записанный при недостаточно высоком разрешении. Наблюдаются два пика, отвечающие протонам групп СНзС и СНС1г со своими сдвигами. Отнощение интенсивностей составляет 2 1. При высоком разрешении первая линия расщепляется иа две, а вторая — на три компоненты (рис. 5.32), т. е. наблюдается сверхтонкая (муль-типлетная) структура. Она возникает вследствие магнитного взаимодействия между ядрами, передаваемого через электроны связи, т. е. непрямого спин-спинового взаимодействия. Расстояния между компонентами не зависят от Но. Протон [c.339]

    Электроотрицательность атома фосфора равна 2,1. Элементы с такой величиной электроотрицательности склонны к обобщению электронов без полной их отдачи или присоединения, поэтому в большинстве своих соединений атом фосфора ковалентно связан с соседними атомами. Это подтверждается расщеплением линий спектра ядерно-магнитного резонанса (ЯМР), происходящим в результате непрямого спин-спинового взаимодействия электронов, а также спектроскопическим и рентгенографическим исследйваниями [55]. Наибольшее распространение имеют соединения фосфора с координационными числами 4 и 3, менее распространены соединения с координационными числами 5 и 6. [c.10]

    В результате непрямого спин-спинового взаимодействия сигналы в спектрах ЯМР могут быть расщеплены в мульти-плеты-дублеты, триплеты и т. д. Рассмотрим, например, спектры Н и хлороформа, обогащенного на 100% изотопом углерода Если поместить образец H lз в магнитное поле, протоны в ядре начнут прецессировать-, создавая в месте расположения друг друга дополнительное поле, направленное вдоль или против направления Яд. В каждой конкретной молекуле резонансный сигнал протона окажется вследствие этого в более сильном или более слабом поле, чем для хлороформа с немагнитным изотопом углерода СНСЦ. В образце содержится примерно равное количество молекул, в которых спин С направлен вдоль или против направления поля. Поэтому в ПМР-спектре СНСЦ будут наблюдаться две линии от эквивалентных в химическом отношении протонов. В этом случае принято говорить об одном сигнале ЯМР, расщепленном в дублет за счет спин-спинового взаимодействия с другим ядром. Аналогичное расщепление сигнала будет наблюдаться и в спектре ЯМР С хлороформа. Поскольку расщепление является результатом взаимодействия магнитных ядер внутри молекулы, оно зависит от магнитных свойств ядер и электронных свойств связей, по которым оно передается, но не от напряженности внешнего магнитного поля Яд. Поэтому расщепление измеряют в единицах частоты (Гц) на приборах с магнитами различной [c.292]


    Кроме химического сдвига спектры ЯМР высокого разрешения содержат информацию о непрямых спин-спиновых взаимодействиях ядер, которые передаются с помощью электронных оболочек. Каждый протон благодаря наличию спина можно рассматривать как магнит, который во внешнем магнитном поле ориентируется либо вдоль поля, либо в противоположном направлении. Это магнитное поле ядра вызывает по-.ляризацию электронной оболочки. Эффект поляризации, т. е. частичного изменения ориентации отдельных электронов, передается в молекуле по связи и в конечном счете может достичь следующего ядра. Каждая ориентация спина характеризуется определенной энергией, благодаря чему происходит не только изменение положения линий (химический сдвиг), но и их расщепление, т. е. образование мультиплетов. Этот эффект известен под названием спин-спиновое расщепление или спин-спиновое взаимодействие (ССВ). Это взаимодействие передается через электронную связь благодаря небольшому расспариванию электронов, ее осуществляющих, т. е. изменению взаимной ориентации спинов этих электронов связи. Взаимное влияние ядер через двойные и тройные связи распространяется сильнее, чем через одинарные, поэтому эффект спин-спинового взаимодействия быстро возрастает при увеличении числа промежуточных связей. [c.186]

    Расщепление сигналов ПМР было обнаружено в 1950 г, (Хан и Мэксуел, Проктор и Ю). В 1950 г. и последующих годах Рэмси объяснил появление химических сдвигов влиянием электронного окружения ядер данного изотопа, а расщепление сигналов —> спин-спиновым взаимодействием между ядрами. Протоны, так же как и другие ядра со спином, не равным нулю, сами являются слабыми магнитами, создающими вокруг себя магнитные поля, которые могут взаимодействовать либо непосредственно черев пространство (прямое спин-спиновое взаимодействие), либо вдоль цепи химических связей (непрямое спин-спиновое взаимодействие). Очевидно, что константы непрямого спин-спинового взаимодействия, зависящие от характера связей и геометрии молекулы, могут быть использованы для изучения последних. Таким образом, в самом начале 50-х годов были созданы теоретические основы для применения ПМР-спектро-скопии в органической химии. [c.263]

    Вопрос о закономерностях делокализацип спиновой плотности представляет большой интерес для теоретической химии. Наряду с широко известной делокализацией по системе сопряженных связей методы магнитной радиоспектроскопии позволили изучить значительно более топкие эффекты возмущающего влияния неспаренного электрона, локализованного в основном на одном атоме [47]. Делокализация спиновой плотности, обусловленная таким возмущением, может быть изучена на разных молекулярных системах. Наиболее характерными примерами таких систем являются свободные радикалы с локализованной валентностью. Сведения о распространении возмущения, обусловленного неспаренным электроном, могут быть получены в этом случае из констант изотропного сверхтонкого взаимодействия в спектрах ЭПР. Аналогичные сведения могут быть получены также в случае парамагнитных комплексов (из контактных химических сдвигов сигналов ЯМР) и в случае молекул с насыщенными связями (из констант непрямого спин-спинового взаимодействия, см. ниже). Учитывая сказанное, можно надеяться, что сравне- [c.189]

    Для радикалов, описываемых слейтеровским НХФ-детер-минантом. оказывается возможным каждой связи или неподеленной паре электронов сопоставить совокупность двух а- и р-спин-орбиталей, получающихся в процессе локализации при этом основные коэффициенты соответствующих сс- и р-локализо-ванных МО будут почти одинаковыми. Выделенная а-спин-ор-биталь (для результирующего спина Sz, равного V2) занята неспаренным электроном. Такой подход позволяет сформулировать способ разделения прямых вкладов в постоянную сверхтонкого взаимодействия и непрямых спин-поляризационных добавок в рамках метода НХФ. Первые определяются зарядовым распределением локализованных неспаренных спин-орбиталей, вторые — матрицей спиновой плотности (р — рР)лок, построенной на орбиталях, соответствующих химическим связям и неподеленным парам электронов. Этот метод был успешно использован для изучения ацетил-, винилокси- и оксиранил-радикалов состава С2Н3О [54]. [c.91]


Руководство по аналитической химии (1975) -- [ c.254 , c.258 , c.259 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие спин спин

Спин электрона

Спин-спиновое взаимодействие непрямое

Спин-эхо

Спины

Спины электронные



© 2025 chem21.info Реклама на сайте