Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кольцевые токи, влияние на химические сдвиги

    Ароматические протоны производных бензола обычно дают сигналы в интервале 6,5—8,56, т. е. в более слабых полях, чем олефиновые протоны (влияние кольцевых токов см. разд. 3.3.1). Химические сдвиги протонов в орто- и параположениях определяются индукционным и мезомерным эффектами заместителя, а протонов в метаположениях — в основном индукционным эффектом (см. табл. 10 приложения). [c.130]


    Вследствие используемого метода наблюдения, обычно химические сдвиги являются единственными параметрами, которые можно извлечь из спектра ЯМР С. Часто в спектре содержится просто единственный сигнал для каждого неэквивалентного атома углерода или группы в молекуле. В качестве примера рассмотрим спектр этилацетата (см. рис. 9.3-9). Четырем ядрам углерода соответствуют четыре сигнала. Наша задача —правильно отнести каждый сигнал к соответствующему типу ядер. Таким образом, знание общих правил, связывающих химические сдвиги с молекулярной структурой, даже более важно в спектроскопии ЯМР С, чем в ПМР. В обсуждении химических сдвигов протонов в предыдущей главе мы рассмотрели некоторые специальные явления, такие, как эффект кольцевых токов и магнитной анизотропии соседней группы, для того, чтобы понять экспериментальные результаты. Мы также упоминали межмолекулярные эффекты, такие, как влияние растворителя и температуры, в частности в связи с химическими сдвигами протонов групп ОН, 8Н, и NH (обмен протонов и водородные связи). В спектроскопии ЯМР на ядрах С все эти эффекты, вьфаженные в м.д., близки по величине к эффектам в ПМР. Следовательно, при рассмотрении суммарных сдвигов в диапазоне около 220 М.Д. они будут менее значимы. С другой стороны, эффекты заместителей, играющие важную роль в спектроскопии ПМР, остаются важными и в случае химических сдвигов ядер С. [c.232]

    Химические сдвиги сигналов протонов в бензолах больше, чем в аналогичных ациклических полиенах. В частности, это приписывают влиянию диамагнитного кольцевого тока (обзоры см. [20— [c.28]

    Сравнения с неароматическими системами такого типа подвергаются критике [26], поскольку действительно трудно подобрать подходящие модельные соединения для некоторых простых гетероциклов, таких, как, например, пиррол. Используются непрямые методы оценки влияния диамагнитного кольцевого тока например, величины химических сдвигов метильных групп гетероциклов, приведенные на рис. 2.16, сравнивали со значениями, рассчитанными для линейных моделей [26]. Наблюдаемые сдвиги в слабое поле были приняты критерием оценки относительной ароматичности гетероциклов. Однако в основном эффект кольцевого тока следует рассматривать скорее как качественный индикатор ароматичности, чем количественный. [c.30]

    Мы детально рассмотрим влияние pH (или pD), температуры, растворителя, состояния окисления и связывание малых молекул на спектры отдельных белков, в том числе содержащих гем-группы и другие простетические группы, резонансные сигналы и влияние которых мы еще не рассматривали. Эффект кольцевых токов (см. разд. 1.11), контактные взаимодействия (см. разд. 1.11 и 13.2.5), водородная связь и изменения локального заряда обусловливают наиболее интересные особенности спектров. Мы обсудим также большое число других факторов, влияющих на химические сдвиги, и другие методы наблюдения, которые лучше всего рассматривать в их конкретных приложениях. Большая часть наблюдаемых спектров получена с использованием накопления большого числа прохождений (иногда 100 и более) с помощью накопителя (см. разд. 1.18.3). [c.351]


    Смещения сигналов в спектрах ЯМР, С при наличии кольцевого тока по абсолютной величине примерно такие же, как и в протонных спектрах, но, поскольку диапазон химических сдвигов ядер на порядок шире, чем ядер 1Н, относительные изменения химических сдвигов в спектрах ЯМР С малы и легко маскируются другими эффектами [78]. Несмотря нй это, имеются предложения о расчете влияния кольцевых токов по данным спектров ЯМР С для отдельных систем [66], [c.28]

    ЭТОГО влияния. Кроме изменений общей восприимчивости, которые уже рассматривались, существуют специфические физические и и химические взаимодействия между соседними молекулами. Они зависят от концентрации растворителя. Например, химический сдвиг протонов чистого бензола на 0,70 м.д. больше, чем для бензола при бесконечном разбавлении в четыреххлористом углероде, даже после введения поправки на общую восприимчивость. Кольцевые токи в соседних молекулах бензола создают локальные ноля, которые сдвигают протонный резонанс в область сильного поля. Водородная связь, молекулярная ассоциация, электрические поля соседних полярных молекул, силы Ван дер Ваальса — все это влияет на химический сдвиг. Поэтому целесообразно применять очень инертный растворитель и экстраполировать наблюдаемые химические сдвиги на бесконечное разбавление раствора. Эти приемы, конечно, не устраняют вредного влияния растворителя, но дают возможность получать воспроизводимые результаты. [c.90]

    В работах, посвященных исследованию ЭДА-комплексов методом ЯМР, большое внимание уделяется вопросу о том, можно ли использовать и как меру относительной энергии ДА-взаимо-действия в различных системах. Но получить однозначный ответ здесь весьма трудно. Все зависит от изучаемого ядра, состава и структуры сопоставляемых соединений. Рассмотрение химического сдвига только с точки зрения изменений электронной плотности, безусловно, является весьма упрощенным. При более строгом анализе необходимо учитывать и другие факторы, оказывающие влияние на параметры экранирования [529—543]. Помимо диамагнитного экранирования ядра окружающими электронами при комплексообразовании могут заметно изменяться парамагнитное экранирование и анизотропия магнитной восприимчивости соседних атомов или групп [см. уравнение (П1.16)]. Кроме того, на б и А могут существенно влиять изменения характера связей. в молекулах исходных компонентов при комплексообразовании, не имеющие отношения к энергии ДА-связей, например 1) изменение характера я-связывания или внутримолекулярной координации 2) изменение гибридизации и электроотрицательности соседей 3) индуктивный эффект и эффект сопряжения 4) кольцевые токи ароматических колец и т. п. Современная теория химических сдвигов практически не позволяет оценить роль каждого вклада. Затруднения, связанные с интерпретацией химических сдвигов, иногда могут быть преодолены путем исследования резонанса нескольких ядер, входящих в состав данного комплекса. [c.135]

    В бензольных растворах диацетилена наблюдается большее повышение химического сдвига при разбавлении (до величины 3,9 м. д.) по сравнению с бензольными растворами винилацетилена. На эффект разбавления здесь накладывается влияние вторичного поля, обусловленного индуцированным кольцевым током мо- [c.270]

    Используя результаты расчета химических сдвигов в приближении влияния кольцевых токов, можно построить детальные модели, которые полуколичественно объясняют наблюдаемые данные. На рис. 22.10 показаны такие модели для усредненных по времени [c.257]

    Влияние кольцевого тока не ограничивается протонами бензольного кольца. Сигналы протонов метильных групп, связанных непосредственно с бензольным кольцом, лежат примерно на 0,5 м. д. дальше в области слабого поля, чем сигналы протонов метильных групп при изолированных двойных связях. Для иллюстрации этих положений мы можем рассмотреть спектр ЯМР такого алкилбензо.иа, как п-цимол. Метильные группы и-цимола, являющиеся частью изопропильного радикала (см. ниже), не дезэкранируются кольцевым током, и их сигналы имеют химический сдвиг 1,22 м. д. (в шкале б). А метильная группа, непосредственно связанная с бензольным кольцом, дезэкранпруется кольцевым током и дает сигнал при 2,305. [c.641]

    Среди факторов, определяющих величину константы экранирования протонов, в начале разд. 1 упоминалось и влияние растворителя. В общем можно полагать, что все эффекты, которые мы до сих пор обсуждали как внутримолекулярные, проявляются также и на межмолекулярном уровне. Например, установлено, что резонансные сигналы веществ, растворенных в ароматических растворителях, проявляются в более сильном поле, чем в растворителе алифатической природы. Этот эффект был приписан диамагнитному кольцевому току бензола и его производных. Подобное же влияние соседних молекул, связанное, однако, либо с экранированием, либо с дезэкранированием, может проявляться в результате магнитной анизотропии кратных связей или влияния электрического поля молекул с большими дипольными моментами. Эффекты растворителя становятся особенно значительными, если межмолекулярные взаимодействия в растворе приводят к образованию специфических комплексов. За счет диполь-дипольных или вандерваальсовых взаимодействий некоторые взаимные пространственные ориентации взаимодействующих молекул становятся более предпочтительными, чем другие. В результате могут наблюдаться специфические изменения резонансных частот отдельных протонов растворенного вещества. Их в свою очередь можно использовать для получения сведений о строении таких комплексов. Поэтому спектроскопия ЯМР оказалась важным методом исследования межмолекулярных взаимодействий. Изменения химических сдвигов под влиянием растворителя обычно меньше 1 м. д. Мы уже рассмотрели в гл. П1 их специальные применения и последствия для резонансных частот эталонных веществ. Для избежания осложнений, вызванных влиянием растворителя, рекомендуется использовать такие инертные растворители, как тетрахлорид углерода или циклогексан. Можно исключить, кроме того, и концентрационные эффекты, если провести измерения при нескольких концентрациях вещества и экстраполировать данные к бесконечному разбавлению. Измерения в газовой фазе, где межмолекулярные взаимодействия сводятся к минимуму, стали осуществимы и для веществ с высокой упругостью паров только после развития импульсных Методов с фурье-преобразованием. [c.109]


    Причину большого изменения химических сдвигов протонов, участвующих в водородных связях, нельзя искать в одних лишь электростатических взаимодействиях. С одной стороны, очевидно, что в системе с водородной связью X—Н--- электрическое поле должно изменять электронную природу ковалентной связи X—Н таким образом, что протон будет дезэк-ранироваться. С другой стороны, протон может испытывать влияние анизотропии соседней группы . Если протон связан примерно с центром я-электронного облака ароматического растворителя, то эффект кольцевого тока приводит к большому сдвигу резонансного сигнала этого протона в сильное поле (табл. 6.7), намного превосходящему смещение химического сдвига в слабое поле, обусловленное любым другим фактором. Водородная связь с участием л-электроноз ароматического или гетероциклического кольца представляет собой единственный тип водородной связи, который приводит к сдвигу резонансного сигнала протона в сильное поле. [c.476]

    Существование диамагнитного кольцевого тока, проявляющееся в экранирующем и дезэкранирующем влиянии на химические сдвиги протонов, было предложено считать диагностическим тестом на ароматический характер соединения. Это оправдано тем, что установлена теоретическая связь между диамагнитной восприимчивостью и энергией резонанса (разд. 2.5) [23]. Но этот критерий следует использовать с осторожностью, так как эффекты кольцевого тока возрастают с увеличением размера цикла и, следовательно, довольно значительны в больших аннуленах и гетероаннуленах. С практической точки зрения, для того чтобы обнаружить зкранирование и дезэкранирование, необходимо иметь для сравнения подходящие неароматические эталонные соединения, а такие соединения нелегко найти для некоторых гетероциклических систем. На химические сдвиги оказывают влияние некоторые другие факторы, помимо диамагнитного кольцевого тока, как, например, нарушение распределения т-электронов гетероатомом и влияние природы растворителей. Величины химических сдвигов для многих гетероциклов сильно зависят от природы растворителя. Однако мы можем видеть качественное влияние кольцевых токов, сравнивая спектры ПМР пиридина, фурана и тиофена и их дигидроаналогов (рис. 2.15). [c.29]

    Хорошо известно, что протоны циклопропильного кольца дают сигналы в аномально сильных полях, примерно в области 9,5— 9,8т, что, вероятно, обусловлено влиянием кольцевых токов [46— 48], и поэтому могут быть легко идентифицированы. В табл. 7.2 приведены результаты анализа этих полимеров по химическим сдвигам и интенсивностям сигналов в спектрах ЯМР. Если R — объемистый заместитель, то винильная полимерная цепь стерически сильно заторможена. При раскрытии цикла напряжение снимается. [c.157]

    Шульман и сотр. [64] описали спектры дезоксимиоглобина и оксимиоглобина на частоте 220 МГц. В спектре дезоксимиоглобина наблюдаются три линии, сгруппированные в области 10,3t, которые отсутствуют в спектре оксимиоглобина. Химические сдвиги двух из них зависят от температуры, и эти линии являются, по всей вероятности, сигналами от протонов гема, смещенными в эту область за счет контактного взаимодействия. Положение третьей линии, по интенсивности соответствующей 6 протонам, не зависит от температуры и, возможно, она относится к метильным группам, резонансные сигналы которых смещены под влиянием кольцевых токов. В спектре оксимиоглобина появляется пик при 12,84 т, которого нет в спектре дезоксимиоглобина. Это может быть только пик, смещенный за счет эффектов кольцевого тока. Можно предположить, что присоединение кислорода к миоглобину вызывает конформационные изменения, которые влияют на взаимное расположение некоторых ароматических колец и соседних с ними протонов. [c.374]

    В спектре ПМР полифенилметакрилата а-метильиые протоны проявляются в виде единичного сигнала. Это натолкнуло ряд авторов [87, 88] на мысль о высокой синдиотактичности цепи. Однако исследование стереоизомерии полиметилметакрилата, полученного из изучаемого полимера в результате гидролиза и метилирования, не подтвердило этого заключения [89]. Наиболее естественным объяснением уменьшения относительных химических сдвигов а-метильных протонов изо-, гетеро- и синдиотактических триад [89] является влияние кольцевых токов фенильных ядер. [c.145]

    В спектрах Н-ЯМР ароматических альдегидов на химические сдвиги альдегидного протона оказывают влияние два противоположных фактора 1) дезэкранирующий эффект ароматического кольца и 2) конъюгативный экранирующий эффект увеличения электронной плотности на карбонильном углеродном атоме. Дезэкранирующий эффект преобладает, так что сигналы ароматических альдегидных протонов расположены в более слабом иоле (б 9,65—11,5), чем алифатических в полициклических ароматических альдегидах, где наблюдаются большие кольцевые токи, эти протоны дезэкранированы еще сильнее [2]. Электроноакцептор-кые заместители в ароматическом кольце увеличивают дезэкранирование. Для орто-замещенных альдегидов сигнал альдегидного протона наблюдается в значительно более слабом поле, возможно в результате выведения формильной группы из плоскости молекулы и уменьшения тем самым конъюгатизного экранирующего эффекта. Это явление особенно ярко выражено в случае орго-ди-замещенных ароматических альдегидов и полициклических альдегидов, таких как 9-антральдегид (бсно 11,51) [2]. [c.695]

    Подавляющее большинство ароматических соединений содержит средние или малые, циклы, которые имеют только внешние протоны. Йх химические сдвиги приходится сравни-.вать с химическими сдвигами не внутренних протонов, а протонов в модельных соединениях. В случае бензола, например, в качестве модели может быть выбран циклогексадиен-1,3, относительно сигналов протонов при двойной связи в котором сигнал в спектр е бензола на 1,5 м. д. сдвинут в слабое поле. Казалось бы, по степени смещения сигналов можно судить о силе кольцевого тока и, следовательно, о степени ароматичности. Доступность спектров ЯМР Щ и каж ущаяся простота интерпретации породили много йопыток такого рода. Их несостоятельность в общем случае обусловлена тем, что увеличение химического сдвига правомерно только частично относить за счет кольцевого тока. Необходимо учиты.ва.ть также вклад эффекта локальной анизотропии и влияние распределения элект-рог ной плотности. Анализ, проведенный применительно к поли-циклическим бензоидным углеводородам [77], показывает, что лишь 50% или менее от общего увеличения химического, сдвига может быть приписано эффекту делокализации, тогда как остальная часть определяется вкладом локальной анизотропии. Простое сопоставление значений химических сдвигов протонов не может дать верного, представления о соотношении кольцевых токов и пригодно скорее длй выявления ароматичности, чем для ее количественной оценки. [c.27]

    Сигнал при 1,9 м. д. относится к 6 сильно экранированным протонам, расположенным внутри цикла. Сигнал при 8,8 м. д. относится к 12 внешним протонам, которые заметно дезэкранирсвапы. Различие химических сдвигов объясняется тем, что кольцевой ток я-электронов, 1П дуцнрованный магнитным полем в этой ароматической молекуле, дает вклады в экранирование внешних и внутренних протонов с разными знаками. Под его влиянием экранирование внешних протонов уменьшается, а внутренних — увеличивается [c.204]

    Следовательно, эпоксидная группа экранирует протоны, расположенные непосредственно над плоскостью кольца, что было объяснено влиянием кольцевого тока [39]. С другой стороны, протоны, расположенные очень близко к атому кислорода эпоксидной группы, дезэкранируются этой группой, что можно видеть при сравнении химических сдвигов Н в соединениях ЬХХ1Х и ЬХХХ. Это дезэкранирование можно объяснить вандерваальсовым взаимодействием между протоном и атомом кислорода с другой стороны, для объяснения можно привлечь и влияние неподеленной пары электронов гетероатома 39]. [c.135]

    Химические сдвиги протонов. Возникновение у ароматических систем индуцированного диамагнитного кольцевого тока (см. рис. 1.1) приводит к деэкранированию внешних протонов кольца, вследствие чего в спектрах протонного магнитного резонанса они проявляются в существенно более слабом поле по сравнению с олефиновыми протонами. Как известно, константа магнитного экранирования атома ад, определяющая химический сдвиг, может быть представлена в виде выражения (П), где и — диамагнитные и парамагнитные вклады от электронов атома А, — вклад от циркуляции электронов на других атомах, обозначенных В, кольцо — вклад от межатомного кольцевого тока. Для ароматических соединений доминирует последний член этой суммы, на основании чего одно время полагали, что химические сдвиги протонов могут служить важным критерием ароматичности. Р1мелось в виду, что более ароматичным соединениям должна соответствовать большая величина диамагнитного кольцевого тока и более сильный сдвиг сигналов-кольцевых протонов в сторону слабых полей. Однако позднее стало очевидным, что и другими членами выражения (И) нельзя пренебрегать. Это в особенности относится к гетероароматическим системам из-за неравномерного распределения в них электронной плотности и влияния анизотропии гетероатома. [c.34]

    Возникновение магнитной анизотропии под влиянием кольцевых токов и связанного с этим вклада в химические сдвиги протонов может быть использовано для изучения ароматичности циклических соединений. В простейшем расчете магнитной анизотропии бензола Поил [61, стр. 225] показал, что величина изменения сдвига определяется, в частности, количеством подвижных я-электронов. С точки зрения ядерного магнитного резонанса, ароматические соединения могут быть определены как соединения, в которых возможно индуцировать кольцевые токи [62]. Качественную оценку ароматичности можно произвести уже при простом сравнении сдвигов близких по окружению протонов. Например, сравнение химических сдвигов бензола (7,17—7,35 м. д.), -протонов тиофена (6,50 м. д.), фурана (5,87 м. д.) и пиррола (5,85 м. д.) со сдвигом в этилене (5,29 м. д.) [63] указывает на уменьшение ароматического характера в этом ряду. При более тщательном учете вкладов в химические сдвиги, обусловленных электронным окружением протонов, возможен грубый количественный расчет ароматичности. Элвидж и Джекман [62] путем сравнения химических сдвигов кольцевых протонов и протонов метильных групп в серии метильных производных пиридона-2 с химическими сдвигами аналогичных протонов в неароматических гетероциклах или в производных пиридина, в котором я-электроп-ное облако, так же как и в бензоле, полностью делокализовано, пришли к выводу, что ароматический характер кольца пиридона-2 по подверженности кольцевым токам составляет 35 5% от бензола. [c.77]

    Следует, однако, учитывать, что другие факторы, часто действующие в противоположном направлении, могут оказывать большее влияние на химический сдвиг, чем магнитная анизотропия. В частности, увеличение электронной плотности в циклических соединениях ведет одновременно и к повышению экранирования за счет атомной составляющей, и к понижению экранирования кольцевых протонов в связи с возросшим эффектом кольцевых токов. Однако, как правило, первый эффект является определяющим. При переходе от циклопентадиена к циклопентадиенилнатрию сигналы кольцевых протонов смещаются более высокое поле, несмотря на то, что соединение приобретает ароматический характер [64, см. также 65, 66]. [c.78]

    В отличие от ацетилена, углеродные атомы ароматических колец дают сигнал в той же области, что и олефиновые угле-роды. Отсутствие влияния анизотропии в данном случае обусловлено, несомненно, тем, что углеродные атомы кольца лежат на границе области экранирования, вызванного кольцевыми токами. Низкопольное расположение области химических сдвигов карбонильного углерода вызвано, очевидно, в первую очередь, деэкранирующим эффектом электроотрицательного кислорода, а не анизотропией С=0-связи. Интересно, что сигнал центрального углеродного атома алленовой группы также расположен в значительно более низком поле, чем у ацетиленового углерода, несмотря на одинаковую гибридизацию этих атомов. Изучение химических сдвигов углерода в алленовой и карбонильной группах иллюстрирует большую ценность спектроскопии на ядрах С для органической химии, так как сведения, получаемые из протонного резонанса, в данных случаях весьма ограничены. [c.99]

    Считают [74], что магнитная анизотропия ароматических соединений вообще не связана непосредственно с делокализацией я-электронов, а целиком обусловлена эффектом локальной анизотропии. Согласно другой точке зрения, разделяемой большим числом исследователей, концепция кольцевых токов правомерна, но неправильно увеличение химического сдвига ароматических протонов целиком относить за счет кольцевого тока. Необходимо учитывать также вклад эффекта локальной анизотропии и влияние распределения электронной плотности. Анализ, проведенный применительно к ароматическим углеводородам [75], показывает, что лишь 50% или менее от общего увеличения химического сдвига может быть отнесено за счет эффекта делокализации, тогда как остальная часть определяется вкладом локальной анизотропии, особенно значительным для пространственно затрудненных протонов. Влияние электронной плотности на величину химического сдвига иллюстрирует сравнение ПМР-спектров циклооктатетраена (13) и его дианиона (15) положение сигналов протонов в них почти одинаково, несмотря на то, что дианион (15) представляет собой ароматическую частицу, а циклооктатетраен (13)—нет. Не-обходимость учитывать эффект локальной анизотропии и влияние [c.31]

    ПИР-спектры. Как и в случае рассиотренных выше ИК-спектроскопических параметров,при обсуждении вопроса о характере электронного влияния фенильного фрагмента на величину химического сдвига протонов метиленовой группы целесообразно использовать в качестве стандартной серии сравнения замещенные метаны.Наблюдаемый у большинства с -замещенных бензилов почти постоянный сдвиг сигнала протонов метиленовой группы в более слабое поле по сравнению с протонаии иетильной группы в метанах (табл.З) отражает помимо электронного влияния фенильного радакада влияние кольцевого тока и анизотропного эффекта связи некоторых из рассматри- [c.424]


Смотреть страницы где упоминается термин Кольцевые токи, влияние на химические сдвиги: [c.31]    [c.641]    [c.108]    [c.108]    [c.507]    [c.390]    [c.328]    [c.46]    [c.328]    [c.257]    [c.24]   
ЯМР высокого разрешения макромолекул (1977) -- [ c.351 ]

ЯМР высокого разрешения макромолекул (1977) -- [ c.351 ]




ПОИСК





Смотрите так же термины и статьи:

Кольцевой ток

Кольцевые токи

Химический сдвиг



© 2024 chem21.info Реклама на сайте