Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спин-спиновое взаимодействие прямое

    В заключение мы обсудим два механизма спин-спинового взаимодействия, которые играют лишь ограниченную роль или совсем не осуществляются в спектроскопии ЯМР высокого разрешения. Первый представляет собой прямое магнитное взаимодействие ядерных моментов через пространство, уже упоминавшееся раньше (разд. 3, гл, I). Его также называют диполь-дипольным или просто диполярным спин-спиновым взаимодействием. Как показывает качественное рассмотрение, это взаимодействие ведет к расщеплению резонансного сигнала на величину АВ  [c.137]


    Из существующей теории следует, что константы спин-спинового взаимодействия можно различать по знаку как положительные или отрицательные в зависимости от относительной энергетической выгодности той или иной взаимной ориентации ядерных спинов во внешнем магнитном поле. Экспериментально могут быть определены только относительные знаки констант спин-спинового взаимодействия, но принято, что прямая константа . С1н является положительной, исходя из чего указывают и знаки других констант. [c.27]

    Значения констант спин-спинового взаимодействия, как следует из сказанного (см. гл. I 2.3), также могут служить для целей идентификации и вместе с мультиплетностью и соотношением интенсивности компонент сигнала несут ценную структурную информацию. Прямые и геминальные константы ( / и V) характеристичны для типов связей атомов с магнитными ядрами, т. е. для валентных состояний атомов или гибридизации АО. Так, например, [c.35]

    Рассмотренное магнитное взаимодействие между ядрами Н и В является прямым диполь-дипольным взаимодействием. Оно проявляется только в кристаллическом состоянии. В жидкости из-за беспорядочного молекулярного движения угол 0 хаотически меняется, что приводит к усреднению до нуля прямых диполь-дипольных взаимодействий поэтому в спектрах ЯМР жидкостей и газов спин-спиновое расщепление не должно возникать. Однако опыт показывает, что очень небольшое расщепление все же сохраняется даже при быстром беспорядочном движении. Правда, это расщепление имеет порядок 0,8 А/м, т. е. примерно в тысячу раз меньше, чем можно было бы ожидать для прямого спин-спинового взаимодействия. Наблюдаемое остаточное расщепление не является результа- [c.78]

    Жидкокристаллические растворители относятся к особому типу веществ и обладают рядом удивительных свойств. В веществе, которое находится в жидкокристаллическом состоянии, существует высокая степень дальнего порядка. Конечно, это не твердые вещества, но время от времени в жидкокристаллической фазе возникают области упорядоченности молекул. Это не случайно длинным молекулам выгоднее расположиться в одну линию. Они располагаются пучками и одновременно захватывают растворенные вещества, ориентируя их вдоль этих пучков. Конечно, эти образования очень быстро разрушаются и возникают в другом месте. Под действием внешних факторов, таких как электрическое и магнитное поля, может образоваться более устойчивая структура с дальним порядком. Если поместить жидкокристаллическое вещество в межполюсный зазор включенного ЯМР-спектрометра, то молекулы, образующие это вещество, будут располагаться более или менее упорядоченно. Они будут ориентированы магнитным полем. И вместе с собой они сориентируют растворенные молекулы. К чему это приведет Из теории спин-спинового взаимодействия известно, что прямое спин-спиновое взаимодействие в жидкостях не наблюдается, из-за усреднения до нуля тепловыми движениями. Его можно наблюдать только в кристаллическом состоянии. В жидкокристаллическом растворителе молекулы растворенного в нем вещества будут иметь некоторые предпочтительные ориентации в магнитном поле. В этом случае начинают проявляться прямые спин-спиновые взаимодействия. В молекуле бензола шесть протонов. Все они начинают взаимодействовать между собой и будет получаться картина, отвечающая сложному спин-спиновому взаимодействию. Спектр, получающийся при [c.113]


    При каких условиях можно наблюдать прямое спин-спиновое взаимодействие Чем отличается его происхождение от непрямого спин-спино-вого взаимодействия  [c.115]

    Почему обычно не проявляется прямое спин-спиновое взаимодействие ядер 1 С между собой в соединениях, необогащенных изотопом i  [c.147]

    Кроме внешнего поля и внутренних магнитных полей движущихся электронов ядра находятся в магнитных полях соседних ядер. Прямое действие магнитных полей ядер друг на друга очень мало, так как оно быстро затухает с расстоянием. Но электроны, осуществляющие химическую связь (напомним, что они имеют собственный магнитный момент), ориентируясь в поле одного ядра, воздействуют затем на другое, осуществляя, таким образом, спин-спиновое взаимодействие ядер. Величина этого взаимодействия — так называемая константа спин-спинового взаимодействия J измеряется в герцах. Взаимодействуют обычно только атомы соседних групп, расщепляя соответствующие сигналы в сложные мультиплеты. Так протоны групп, находящиеся рядом с группой, имеющей одиночный атом водорода, расщепляются в дублет с соотношением интенсивностей 1 1, потому что спин протона может иметь только две ориентировки во внешнем поле с примерно одинаковой вероятностью. Группы с двумя протонами, например —СНг, расщепляют сигналы соседних групп в триплеты с соотношением интенсивностей 1 2 1, так как спины двух протонов могут быть направлены или оба по полю, или в разные стороны, или оба против поля, причем легко видеть, что вероятность среднего случая в два раза больше, чем каждого из крайних. [c.344]

    Введение изучаемого вещества в жидкокристаллическую фазу приводит вследствие существования в ней упорядоченного расположения молекул к вынужденной ориентации растворенных молекул и снятию вырождения (в отличие от того, что происходит в обычных жидкостях за счет теплового движения) прямых спин-спиновых взаимодействий, а это дает возможность по спектру жидкого образца определить геометрическую структуру молекулы. [c.733]

    Изучение эффектов ХПЭ может дать уникальную информацию о механизме химических реакций. Особенно важно то, что эффект ХПЭ прямо отражает спин-спиновые взаимодействия неспаренных электронов (обменное и диполь-дипольное). В следующей лекции излагается применение ХПЭ для изучения строения реакционного центра и кинетики переноса электрона в реакционном центре фотосинтеза. [c.104]

    Прямое связьшание двух магнитных моментов г и в пространстве, Dij, зависит от где — межъядерное расстояние. Вследствие молекулярного беспорядка среднее прямое взаимодействие в растворе равно нулю. Несмотря на то что современные методы ЯМР позволяют наблюдать прямое спин-спиновое взаимодействие в монокристаллах и аморфных твердых веществах, выделение полезной информации из полученных данных затруднено вследствие того, что присутствуют как меж-, так и внутримолекулярные взаимодействия. Использование жидких кристаллов как ориентирующих растворителей позволяет избежать этого недостатка твердых тел за счет усреднения межмоле-кулярного прямого взаимодействия, при этом значение внутримолекулярного взаимодействия остается ненулевым. Спектроскопия ЯМР ориентированных молекул в жидких кристаллах в настоящее время является эффективным методом определения структуры малых молекул, имеющих до десяти магнитных ядер. [c.391]

    Тогда магнитная информация передается по короткому проводу , где нет формальной связи. Так, в соединении 70 наблюдается спин-спиновое взаимодействие протонов На и Нь в 1,1 Гц. Эти протоны разделены шестью а-связями в конфигурации, неблагоприятной для обычного дальнего спин-спинового взаимодействия. Поэтому очень вероятно прямое спин-спиновое взаимодействие между Ь-орбиталями двух атомов водорода. Этот механизм, который называют связыванием через пространство, имеет большое значение для спин-спинового взаимодействия между протоном и ядром фтора, а также между ядрами фтора (см. гл.Х). [c.139]

    Как и в случае констант Р, Р, экспериментальные данные для ряда соединений указывают, что при спин-спиновом взаимодействии H, Р также действует прямой механизм (табл. X. 5). [c.385]

    Расщепление линий, обусловленное химическим сдвигом, прямо пропорционально напряженности поля, тогда как расщепление /, вызванное спин-спиновым взаимодействием, не зависит от напряженности поля. Поэтому переход к более высоким напряженностям поля облегчает интерпретацию спин-спиновых расщеплений в спектрах ЯМР. [c.510]

    Все сказанное относится и к прямому определению с помощью метода ЯМР. Для спектров ЯМР обычно характерно меньшее число сигналов, а природная концентрация ниже концентрации С. Никаких новых проблем здесь не возникает при условии наличия соответствующих приборов. В принципе тем же самым способом можно определять и Н в соответствующем диапазоне частот при условии селективного или шумового подавления спин-спинового взаимодействия ядер Н. Однако и и Н с большей чувствительностью и с большей информативностью определяются в сочетании с С. [c.477]


    Наряду со спин-решеточной релаксацией имеется второй процесс— процесс прямого взаимодействия неподвижных магнитных ядер друг с другом спин-спиновое взаимодействие). На каждый спин действует, кроме поля Но, локальное поле, создаваемое соседними ядрами и равное [c.337]

    Однако элементы можно измерить раздельно, если релаксацию ансамбля спинов / наблюдать косвенно с помощью так называемого ядра-зонда со спином 5. Этот спин не должен давать заметный вклад в релаксацию спинов /, но следует иметь разрешенное спин-спиновое взаимодействие со всеми исследуемыми спинами I [9.39]. В данном случае каждому переходу мультиплета спинов 5 соответствует одно определенное состояние ансамбля I. Если релаксацией ядер 5 можно пренебречь и выполняется приближение начальных скоростей (гщ < то амплитуды кросс-пиков / / обменного 2М-спектра ядер 5 будут прямо пропорциональны вероятности переходов [c.626]

    Постоянное повышение требований к разрешающей способности спектрометров ЯМР объясняется сложной многокомпонентной структурой спектров ЯМР. Как уже указывалось ( 6), в жидкостях и газах прямые диполь-дипольные взаимодействия эффективно усредняются, так что естественная ширина линии достигает 0,01 Гц (т. е. уменьщается в миллион раз по сравнению с шириной линии ь кристалле). В этих условиях хорошо обнаруживаются слабые взаимодействия ядерного магнитного момента экранирование ядра электронами (химический сдвиг) и косвенное спин-спиновое взаимодействие (через электроны связей). Эти два взаимодействия определяются химической природой исследуемого вещества, что позволяет использовать спектры ЯМР как весьма эффективный метод установления структуры соединений. [c.34]

    Константы спин-спинового взаимодействия измеряют в Гц. Различают прямые константы /нн (единственная константа такого типа наблюдается в молекуле водорода, см. 4), геминальные константы /нн> вицинальные константы /нн и некоторые дальние константы нн, /нн (аллильные, гомоаллильные). [c.85]

    На частоту резонанса данного ядра А влияет не только электронное окружение, но и соседние магнитные ядра. Если спин соседнего магнитного ядра X направлен вдоль поЛя постоянного магнита, то он усиливает поле в месте расположения ядра А, если-против, то ослабляет его на ту же величину. Принято различать прямое и непрямое спин-спиновое взаимодействие магнитных ядер. Прямое взаимодействие передается через пространство. Оно является основной причиной уширения линий ЯМР вязких растворов и особенно твердых тел. Прямое спин-спиновое взаимодействие усредняется при быстром движении молекул в растворе или расплаве вещества. Непрямое спин-спиновое взаимодействие передается в пределах молекулы по системе связей и не усредняется при быстром молекулярном движении. [c.292]

    Изучение С ЯМР спектров бис(л-кротилникельгалогенидов) показало, что электронная плотность неравномерно распределена между тремя атомами углерода л-аллильной группировки и умень-щается в ряду Сз > С1 > 2 [66]. Экранирование концевых атомов углерода, С) и Сз увеличивается в ряду транс-лигандов I < Вг < С С1, что хорошо коррелируется с большей лабильностью л-аллильного лиганда в иодсодержащем комплексе по сравнению с хлорсодержащим. Близкие значения констант спин-спинового взаимодействия Н- С атомов углерода Сь С2 и Сз в пределах 159— 165 Гц является прямым экспериментальным доказательством р -гибридизации аллильных атомов углерода. [c.109]

    Экспериментальные результаты, полученные при изучении этой реакции, являются прямым доказательством того, что растущая полимерная цепь образует с переходным металлом л-аллильный комплекс. Постоянство константы спин-спинового взаимодействия /а г = 13Гц свидетельствует о сохранении на протяжении всего процесса полимеризации сын-конфигурации концевого звена растущей полимерной цепи, что хорошо соответствует транс-1,4-структуре звеньев образующихся полибутадиенов. [c.117]

    Для того чтобы проявилось избирательное действие какого-либо реагента на спектр ЯМР субстрата, необходимо, чтобы между частицами в растворе хотя бы на короткое время устанавливалась химическая связь, определяющая их взаимную фиксацию в пространстве. В противном случае тепловое движение частиц усреднит до нуля все их магнитные взаимодействия, как это происходит с прямым спин-спиновым взаимодействием в растворе. ЛСР содержат координационно ненасыщенный ион лантаноида, способный реагировать с нуклеофильными соединениями различных классов. Таким образом, ЛСР выступает прежде всего как льюисова кислота, а субстрат — как льюисово основание. К одной молекуле ЛСР-хелата Я может присоединиться одна или две молекулы монофункционального субстрата 5 с образованием аддукта  [c.104]

    Имеется много доказательств, вытекающих главным образом из рассмотрения констант спин-спинового взаимодействия в ЯМР-спектрах, что связи в циклопропанах отличаются от связей в соответствующих соединениях, не имеющих углового напряжения [204]. В обычном атоме углерода гибридизуются одна 5- и три р-орбитали, давая почти эквивалентные зр -орби-тали (разд. 1.11), каждая из которых на 25% имеет 5-харак-тер. Но в циклопропановом атоме углерода четыре гибридные орбитали далеко не эквивалентны. Две орбитали, направленные к внешним связям, имеют больший х-характер, чем обычная 5р -орбиталь, тогда как две орбитали, образующие связи внутри цикла, имеют меньший 5-характер и больший р-характер, что делает их похожими на обычные р-орбитали, для которых характерны валентные углы 90, а не 109,5°. Поскольку угловое напряжение за счет уменьшения углов в циклопропанах соответствует разности в величине характеристичного угла и реального угла в 60°, этот дополнительный характер частично снимает напряжение. Внешние орбитали на 33 %, имеют 5-харак-тер, т. е., по существу, являются р -орбиталями внутренние орбитали только на 17 % имеют 5-характер, так что их можно назвать зр -орбиталями [205]. Таким образом, каладая углерод-углеродная связь в циклопропане образована перекрыванием двух 5р -орбиталей. Расчеты по методу молекулярных орбита-лей показывают, что такие связи не являются целиком сг-свя-зями. В обычных С—С-связях 5р -орбитали перекрываются таким образом, что прямая, соединяющая ядра, становится осью симметрии электронного облака. Но в циклопропане электронная плотность смещена в сторону от кольца. Направление орбитального перекрывания показано на рис. 4.5 [20] угол 0 для циклопропана составляет 2Г. Аналогичное явление наблюдается и для циклобутана, но в меньшей степени здесь угол 0 равен 7° [206]. Связи в циклопропане называют изогнутыми, или банановыми -, по своему характеру они являются промежуточными между о- и я-связями, поэтому циклопропаны в некоторых отношениях ведут себя подобно соединениям с двойной связью [207]. Данные УФ-спектров [208] и некоторые другие данные свидетельствуют о том, что циклопропановое кольцо участвует в сопряжении с соседней двойной связью, причем в кон- [c.188]

    Возникповепне сиин-спиновой связи удобно рассматривать на примере ядер со спином 1/2, например протонов. Теория спин-спинового взаимодействия базируется на том положении, что прямое диполь-дипольное взаимодействие, которое осуществляется в твердых телах, для жидкостей и газов в результате быстрого молекулярного движения усредняется до нуля. Тонкая структура в спектрах является следствием взаимодействия ковалентно связанных ядер через электронные оболочки в молекулах. Рассмотрим гипотетическое вещество, молекула которого содержит в себе магнитные ядра типа А и В. Ядро А в поле Но имеет два состояния — с низкой (а) и высокой ((3) энергией. Это справедливо также и для ядер В. Учитывая это, можно сказать, что в зависимости от своего состояния ядро А создает увеличение или уменьщение напряженности магнитного поля, при котором наблюдается резонанс ковалентно связанного с ним ядра В. Если пренебречь небольшим различием в населенности двух уровней, можно считать, что состояния аир равновероятны и резонанс ядер В проявляется в виде двух линий одинаковой интенсивности. Расстояние между линиями характеризует энергию спин-спиновой связи и называется константой спин-спинового взаимодействия. Если повторить рассуждения, окажется, что спектр ядер А будет состоять из двух линий с такой же константой спин-спинового взаимодействия. [c.74]

    В обычном спектре ПМР каждый имеюш ийся в молекуле протон дает свой сигнал (другое дело, что сигналы двух или более протонов могут накладываться друг на друга). Этот сигнал характеризуется тремя параметрами интенсивностью, которая прямо пропорциональна содержанию протонов данного типа в образце, величиной химического сдвига, измеряемого от некоторого внутреннего стандарта (чаще всего тетраметилсилана) в единицах м.д. (т. е. в миллионных долях рабочего поля прибора), и величиной константы спин-спинового взаимодействия с другим (или другими) протонами в той же молекуле. Эта константа, проявляющаяся в спектре в виде расщепления сигналов на отдельные компоненты и сокращенно называемая обычно КССВ, измеряется в герцах (рис. 3). [c.76]

    ЯМР-СПЕКТРОСКОПИЯ. Наличие фтора можно показать с помощью ЯМР-спектроскопии либо прямым наблюдением за ядром фтора, либо паблюдепием за расщеплением сигналов протона под действием ядра фтора. Резонансная спектроскопия фтора в данной книге не обсуждается, хотя можно сослаться на гл. 29. Некоторые типичные константы спин-спинового взаимодействия ядер водорода и фтора приведены в табл. 6-2. Влияние галогенов на химические сдвиги протонов обсуждается в гл. 29. [c.245]

    Какова точность редактирования Нетрудно догадаться о причинах, по которым процесс редактирования может оказаться иесовершенньа . Например, амплитуды сигналов зависят от угла поворота 0-импульса, и неправильная его калибровка или неоднородность поля вызовут появление ошибок. Далее, три входящие в последовательность задержки должны соответствовать величине прямой константы спин-спинового взаимодействия протои - углерод, которая может изменяться от 125 до [c.209]

    Еслн мь1 проделаем то же самое для такого сильного ядра, как 41, то проблема чувствительности исчезает, но вместо нее возникают другие сложности [14]. Выбор задержки т в случае С прост для систем АХ ее оптимальное значение составляет l/4i (для сильносвязанных систем нужны несколько различающиеся значения, см. книгу [5]). Диапазон значений J для прямых углерод-углеродных констант относительно невелик (примерно 35-55 Гц). Для протонов, напротив, зависимость т от J оказывается более сложной нз-за того, что часто приходится иметь дело со сложными спиновыми системами, да н диапазон изменения констант спин-спинового взаимодействия оказывается шире (для сравнения, скажем, от 2 до 20 Гц). Другая проблема д.пя систем, содержащих более двух спинов, состоит в том, что двухквантовая когерентность при действии последнего импульса может перераспределяться по всем переходам в спиновой системе это усложняет интерпретацию каждой строки но Vi, соответствующей сигналам от пары связанных ядер. К счастью, этот недостаток может быть частично устранен в результате того, что последний импульс задается равным Зтг/4, а не л/2, что по аналогии с OSY-45 ограничивает большую часть перераспределения теми переходами, в которых участвующие ядра непосредственно формируют двухквантовую когерентность [14] (здесь термин непосредственно используется в прямом смысле, безотносительно связи между переходами). На рнс. 8.41 представлен протонный двумерный спектр INADEQUATE 2,3-дибромцропноиовой кислоты с завершающими импульсами л/2 и Зл/4. [c.336]

    Спин-спиновое взаимодействие, передаваемое а-электрон ми, уже было представлено схематически на рис. II. 12. Мом но составить аналогичную диаграмму и для я-механизма. Ра1 смотрим группу СН с 5р -гибридным атомом углерод (рис. IV. 27, а). В первом приближении взаимодействие меж протоном и я-электроном на 2рг-орбитали невозможно, т скольку протон лежит точно в узловой плоскости этой орб1 тали. Однако из данных спектроскопии ЭПР известно, чт это заключение не верно, так как наблюдается сверхтонко расщепление линий в спектрах ЭПР ион-радикалов я-систе за счет прямого взаимодействия протона с неспаренным эле троном, расположенным на 2рг-орбитали того же углеродно  [c.130]

    Как будет рассмотрено в гл. X, имеется несколько вариантов осуществления гетероядерной развязки типа которые оказываются чрезвычайно полезными для отнесения сигналов в спектрах ЯМР С. Один из этих вариантов, обсуждаемый ниже, известен как внерезонансная развязка. Как показывает само название, это метод частичной развязки, при котором используют сильное ВЧ-поле в области ЯМР Н с частотой V2, находящейся вблизи, но вне облучаемого резонансного сигнала. Важнейшая особенность этого эксперимента состоит в том, что в экспериментах по частичной развязке сохраняются расщепления линий. Разумеется, эти расщепления меньше, чем константы спин-спинового взаимодействия, но типичная мульти-плетная структура некоторых сигналов сохраняется. Этот эффект частичной развязки иллюстрирует рис. IX. 4, где наблюдают уменьшенное расщепление в дублете при смещениях частоты (vл —V2), равных —15 и —10 Гц. В случае ЯМР исчезают все малые константы С, Н (геминальные, вицинальные и дальние) и остаются только расщепления, обусловленные большой прямой константой. Вследствие этого сигналы ЯМР в экспериментах с внерезонансной развязкой от Н имеют вид мультиплетов первого порядка и могут быть легко распознаны. Для первичного (СНз), вторичного (СН2), третичного (СН) и четвертичного атомов углерода наблюдают соответственно квартет, триплет, дублет и синглет. Пример такого спектра приведен на рис. IX 20. [c.330]

    Большие значения констант /рр в насыщенных системах рассматривались как свидетельство прямого взаимодействия между ядрами фтора, о котором шла речь выше. Атомы фтора в 1,3-положениях могут очень тесно сближаться друг с другом, поскольку такие системы конформационно подвижны. При изучении 4,4 -дифторфенантрена оказалось, что константа спин-спинового взаимодействия ядер фтора в нем составляет 170 Гц. Очевидно, что при такой величине константы взаимодействие не может передаваться только через пять связей, разделяющих ядра фтора. Поэтому вполне вероятно, что большая величина константы спин-спинового взаимодействия в этой системе обусловлена очевидной пространственной близостью двух атомов фтора (табл. X. 5). [c.384]

    Методы отнесения сигналов. Сейчас для отнесения резонансных сигналов экспериментатор имеет большой выбор методов. Большинство из них использует определенные типы развязки от протонов. Например, после записи обычного спектра с широкополосным подавлением Н обычно измеряют спектр неполного двойного резонанса. Как уже обсуждалось в разд. 2.8 гл. IX и как показано на рис. IX. 20, так можно различить в спектре первичные, вторичные, третичные и четвертичные атомы углерода. Кроме того, возможность импульсной развязки открывает путь для наблюдения констант Н, С. По крайней мере прямые константы через одну связь обычно находятся с точностью, достаточной для использования при отнесении, даже если совершенно корректное определение этих параметров и невозможно без проведения полного анализа спектра (см. гл. V). Это требование в особенности необходимо выполнять при определении меньших констант спин-спинового взаимодействия более чем через одну связь, даже несмотря на то, что многие неразвязанные спектры кажутся спектрами первого порядка. Тем не менее данные об изменениях /( С, Н) в зависимости от строения, которые позднее мы обсудим детально, представляют большую ценность для целей отнесения. Например, в циклопропане /( С, Н) составляет 161 Гц, а в метане — только 125 Гц. Поэтому метиленовые группы трехчленных циклов легко распознать по большому триплетному расщеплению их сигнала С. [c.392]

    Геминальные и вицинальные константы спин-спинового взаимодействия которые мы здесь не будем рассматривать, меньше, чем прямые константы, примерно в 20 раз. Поэтому их труднее определить, поскольку соответствующие С-сател-литы в протонных спектрах расположены очень близко к интенсивным сигналам молекул, содержащих изотоп С, а Для определения по спектрам С обычно необходимо проводить полный анализ сложных спиновых систем, [c.410]

    Так, вследствие быстрого в шкале времени ЯМР обмена местами карбоксильных групп при помощи этого вида спектроскопии для подавляющего большинства диамагнитных комплексонатов ЭДТА не удается различить G- и R-циклы, а также наблюдать спин-спиновое взаимодействие катиона с карбоксильной группой. В случае ЦГДТА такие наблюдения легкоосуществимы, что дает возможность прямого и независимого определения дентатности лиганда в растворе, строения нормального комплексоната, а также изучения строения и кинетики образования смешаннолигандных комплексонатов. [c.176]

    Развитием прямого метода определения С с помощью ЯМР Явилось использование С— С-спин-спинового взаимодействия, - бусловленное этим взаимодействием расщепление сигнала в спектра метаболита, образовавшегося из предшественника с двумя [c.347]

    Альтернативной по отношению к спектроскопии OSY является многоквантовая спектроскопия. Преимуществом этого метода является больший по сравнению с OSY объем информации. Однако при этом существенно затрудняется интерпретация спектров. Двухквантовый спектр содержит не только информацию о том, какие из спинов связаны между собой прямым взаимодействием, которым отвечают пики, расположенные симметрично относительно диагонали, соответствующей двухквантовым переходам, но также и пики, для которых симметричные относительно диагонали партнеры отсутствуют. Спектры содержат информацию о других спинах, связанных между собой косвенными спин-спиновыми взаимодействиями, аналогично R T-спектроскопии. [c.93]

    Если ввести задержку регистрации, как, например, в последовательности 1г/2 — h/2 — тг — t /2 — h, то мы получим 2М У-спектр. Из спектра на рис. 7.2.11, б можно сделать вывод, что сигналы сдвигаются в соответствии с выражением (6.6.5), а это характерно для спектров спинового эха. В. предельном случае слабого взаимодействия в = 0) мы имеем простой вид спектра, как на рис. 7.2.1, б. Дополнительные сигналы, обусловленные сильным взаимодействием, наблюдаются на частотах Ш1, соответствующих разности частот химических сдвигов, так же, как в корреляционной спектроскопии с задержкой регистрации ( SE SY см. разд. 8.3,1). Если двумерную матрицу данных подвергнуть преобразованию сдвига, как показано на рис. 7,2.11, 6, то в проекции спектра появляется сигнал посередине между двумя химическими сдвигами, что характерно для сильного взаимодействия. Поскольку проекции обычно находят из спектров абсолютных значений, все четыре сигнала, наблюдаемые на частоте Ш2 = (1/2) (П + I2 ), складываются друг с другом независимо от их чередующихся знаков. Хотя на первый взгляд появление дополнительных сигналов должно затруднить интерпретацию спектра, в действительности идентификацию линий провести несложно, поскольку дополнительные линии являются прямым доказательством наличия спин-спинового взаимодействия между ядрами. [c.450]

    В слабо связанных системах с одной большой константой гетероядерного спин-спинового взаимодействия, которая намного больше, чем другие гомо- и гетероядерные константы, для устранения влияния всех соответствующих гомо- и гетероядерных констант в течение периода ЭВОЛЮЩ1И может быть использована развязка билинейным вращением (BIRD) (рис. 8.5.3, г) [8.115—8.117]. Сандвич для развязки билинейным вращением рассматривался в разд. 1.2.2.6 и 1.2.2.1 для разделения прямых (непосредственно связанных ядер) и дальних /S-связей. В общем случае слабо связанной системы действие сандвича импульсов описывается преобразованиями, определяемыми выражением (7.2.17), при т=(Л/)" , т.е. при условии, что ширина сандвича BIRD соответствует обратной величине прямой константы взаимодействия. [c.564]

    Однако для некоторых прямых констант (например, /ср) ряда других констант (например, нн) наблюдаются отрицательные значения. В ЛКАО МО теории спин-спинового взаимодействия эти факты находят объяснение в том, что наряду с основным переходом (я1зсв-> фантисв) заметный вклад в константу дают переходы между другими занятыми и возбужденными состояния- [c.84]

    Аналогичным образом проводятся оценки констант связи /сн и для остальных атомов углерода. Заметим, что прн использовании таких сравнительно упрощенных моделей, какими являются соединения XVH—XXI, вряд ли следует рассчитывать на погрешности, меньшие, чем 5 Гц для прямых констант и 1 Гц для дальних констант спин-спинового взаимодействия. Однако и эти приближенные оценки оказываются чрезвычайно полезными при отыскании хорошега начального приближения для анализа спектров ЯМР С монорезонаиса, а также при интерпретации некоторых видов спектров двойного резонанса С — ГН (гл. 6). [c.99]


Смотреть страницы где упоминается термин Спин-спиновое взаимодействие прямое: [c.4]    [c.88]    [c.337]    [c.145]    [c.173]    [c.328]    [c.340]    [c.176]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.365 , c.395 ]

ЯМР высокого разрешения макромолекул (1977) -- [ c.28 , c.29 , c.41 ]

Ядерный магнитный резонанс в органической химии (1974) -- [ c.60 ]

ЯМР высокого разрешения макромолекул (1977) -- [ c.28 , c.29 , c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие спин спин

Прямые взаимодействия

Спин-эхо

Спины

Физические основы прямого и непрямого спин-спинового взаимодействия

Фтор спектроскопия прямое спин-спиновое взаимодействие



© 2025 chem21.info Реклама на сайте