Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы кислород и серу

    Нефтяной кокс - высококачественный углеродистый материал - является конечным продуктом глубоких превращений нефтяных углеводородов при термической деструкции. По внешнему виду кокс представляет собой куски (или частицы) неправильной формы разного размера, черного цвета с металлическим блеском. Частицы кокса имеют развитую пористую структуру. Элементный состав кокса следующий 90-97% углерода, 1,5-8,0% водорода, остальное до 100% - азот, кислород, сера и металлы. [c.12]


    Отрыв электронов от металла при адсорбции на нем кислорода, серы и других окислителей облегчается тем, что кинетическая энергия электронов снижается при выходе на поверхность металла. [c.113]

    При взаимодействии металла с сухими газами (воздухом, газообразными продуктами горения топлива и др.) при высоких температурах происходит газовая химическая коррозия. Этот вид коррозии возможен и при низких температурах, если при этом на поверхности металла не конденсируется жидкость, проводящая электрический ток. Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей подогрева нефти и другие изделия, работающие при повышенных температурах в среде сухих газов. При проведении многочисленных технологических процессов обработки металлов в условиях высоких температур (нагрев перед ковкой, прокаткой, штамповкой, при термической обработке - закалка, отжиг, сварка) на металлургических и трубопрокатных заводах также возможна газовая коррозия. При взаимодействии металла с кислородом воздуха или содержащимся в других газах происходит его окисление с образованием окисных продуктов коррозии. В отдельных случаях, например при воздействии на металл паров серы или ее соединений, на поверхности металла могут образоваться сернистые соединения. [c.17]

    Образование твердых растворов и соединений между твердым и жидким металлом происходит в результате протекания диффузионных процессов в твердой фазе — атомной и реактивной диффузии — и является весьма нежелательным явлением, так как образующийся слой твердого раствора или интерметаллического соединения обычно бывает хрупким, что снижает пластичность всего изделия. Возможны также частные случаи химического взаимодействия жидкометаллической среды с компонентами твердого металла взаимодействие щелочных металлов с растворенным в твердых металлах кислородом, лития — с углеродом, серой и [c.144]

    Во внешнем электронном уровне атомов этих элементов по. шесть электронов вследствие чего они имеют сильно выраженный неметаллический характер (кроме полония, химия которого мало изучена). Электроотрицательность их выше, чем у элементов подгруппы азота. В соединениях с водородом и металлами кислород, сера, селен и теллур проявляют нормальную валентность, равную двум окислительное число —2. [c.306]


    Из приведенных схем видно, что электровалентная связь является логически крайним случаем ковалентной связи электрон (электроны) одного атома полностью перешел (перешли) к другому атому, также образовав электронную пару (пары), но з же не общую. Однако эта связь качественно отличается от ковалентной и менее универсальна ее образуют лишь атомы элементов резко противоположного характера (щелочные металлы — галогены щелочноземельные металлы — кислород, сера). [c.237]

    Целью сольвентной очистки является извлечение этих нежелательных компонентов и получение очищенного масла с более парафинистым составом. Выделение обычно протекает медленно [И]. Некоторые нежелательные компоненты остаются в рафинате, а некоторые желательные теряются в экстракт. Другие нежелательные компоненты, такие как асфальтовые и смолистые вещества, которые содержат кислород, серу, азот и металлы, удаляются в экстракт более эффективно. Экстракты смазочных масел применяются в частности для производства сульфонатов. Они используются также как сырье для асфальта и, в худшем случае, могут применяться как котельное топливо. [c.285]

    Способность органических продуктов образовывать комплексные соединения с металлами известна давно. Однако своеобразие практического применения их в качестве деактиваторов металла для топлив нефтяного происхождения выдвигает ряд новых, самостоятельных теоретических проблем. Известно, что простейшие органические соединения, содержащие хотя бы один гетероатом (азот, кислород, сера или фосфор), уже обладают координационными связями и способны образовывать с медью комплексные соединения, но такие соединения обладают малой стабильностью и в их присутствии каталитическое влияние меди на окисление бензинов сохраняется. [c.252]

    Эти соединения вследствие меньшего сродства металлов к сере, чем к кислороду, будут разлагаться при более низких температурах. [c.265]

    В газах и дистиллятах коксования концентрируется 92% всего водорода сырья. Из них с газом, который составляет всего 4% от сырья, уходит 7% водорода. Кислород, сера, азот, металлы и зольная часть концентрируются в коксе. При выходе кокса 20% (на сырье) в нем содержится 55% всех неуглеводородных элементов. [c.55]

    Синтетические модели, включающие конденсированную поли-циклическую структуру (5—10 карбоциклических и 1—2 гетероциклических кольца), могут быть, вероятно, с большим успехом использованы для моделирования основных структурных фрагментов молекулы асфальтенов. Дальнейшее усложнение таких синтетических моделей может быть достигнуто введением в их состав атомов металлов (V, № и др.), кислорода, серы и азота. [c.107]

    Высокомолекулярная часть нефти представляет собой сложную многокомпонентную, в большинстве случаев коллоидную систему, стойкость которой зависит от химической природы и количественных соотношений основных ее составляющих (углеводороды, смолы и асфальтены). Химический состав и строение соединений, входящих в эту систему, необычайно разнообразны. Различие химического строения молекул довольно сильно проявляется даже в углеводородах и становится почти безграничным при переходе от углеводородов к весьма разнообразным гетероорганическим соединениям, в состав которых наряду с углеродом и водородом входят кислород, сера, азот, а нередко и металлы (N1, V, Ге, Мд, Сг, Т1, Со и др.). [c.12]

    Помимо углеводородов, в нефти присутствует и некоторое количество других соединений, главным образом в виде смолистого остатка, представляющего собой смесь сложных высокомолекулярных углеводородных веществ, содержащих кроме углерода и водорода такие элементы, как кислород, сера, азот и некоторые металлы (ванадий, никель и др.). Эти вещества являются производными углеводородов, т. е. представляют собой углеводороды, в которых одна группа или ряд групп заменены атомами кислорода, серы и других элементов. [c.242]

    Смолисто-асфальтеновые вещества содержатся в основном в высококипящих нефтяных фракциях и гудронах. Они относятся к классу полициклических соединений, содержащих помимо углерода и водорода кислород, серу, азот, а иногда и различные металлы. Смолисто-асфальтеновые вещества являются нежелательными компонентами масел и удаляются в процессе деасфальтизации (малые их количества могут быть удалены при селективной и адсорбционной очистках). При недостаточно полном удалении смолисто-асфальтеновых веществ снижается эффективность очистки избирательными растворителями, увеличивается необходимая кратность [c.39]

    Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей и другие изделия, работающие при повышенных температурах в среде сухих газов. Газовая коррозия имеет место при горячей обработке металла (прокатка, отжиг, ковка, сварка) на металлургических и трубопрокатных заводах. При взаимодействии металла с кислородом,содержащимся в газах, происходит его окисление, продуктами коррозии являются окисные соединения. В отдельных случаях, например при воздействии на металл паров серы или сернистых соединений, на металле возможно образование сернистых соединений. [c.20]


    В рассматриваемом аспекте для химизма, механизма, кинетики и термодинамики процесса карбонизации большое значение имеет присутствие в нефтяном сырье различных функциональных групп, содержащих кислород, серу и азот, и их термическая стабильность (химическая активность), металлов, их соединений и комплексов, обладающих каталитическим действием на реакции распада, дегидрирования, полимеризации, конденсации и другие. С этой точки зрения,особо следует отметить такие металлы, как ванадий, никель, хром, молибден, кобальт, алюминий, железо и другие. [c.11]

    Гетероцепные полимерные соединения фосфора относятся к числу наиболее интересных неорганических полимеров. В первую очередь это касается полимерных фосфонитрилгалогенидов и фосфатов, исследованию методов синтеза, структуры и свойств, а также проблемам применения которых посвящено подавляющее большинство работ в данной области. К другим неорганическим полимерам фосфора относятся его соединения с металлами, кислородом, серой, галоидами и др. У фосфорных соединений с длинной цепью исследовались вязкостные свойства и разрабатывались высокотемпературостойкие полимеры на их основе которые могут применяться в изоляционных материалах и покрытиях для работы при температурах >300°С, При изучении разнообразных фосфидов рассматривались как природные , так и иокусственно синтезируемые фосфиды Следует отметить, что при рентгеноструктурном исследовании НдРЬРи Кребсом и Людвигом было показано, что атомы Р образуют зигзагообразные цепи, причем каждый третий мостик связан с атомом РЬ, а два других — с атомом Нд. [c.609]

    Химические свойства углерода. Углерод—металлоид. Порядковый номер его 6. Атом углерода содержит четыре валентных электрона, и поэтому углерод в соединениях 4-валентен. При обыкновенной температуре углерод химически мало активен. С повышением температуры активность его значительно возрастает. При высокой температуре он образует ряд соединений с металлами, кислородом, серой, водородом и другими элементами. [c.270]

    Отрывочный характер многих публикаций делает необходимым при обсуждении привлекать данные о взаимодействии гетерокумуленов с МОС переходных и непереходных металлов. В этой связи следует отметить некоторые последние работы. Так, механизм внедрения изоцианата по связям металл—кислород (сера) разобран недавно достаточно подробно на примерах оловоорганических производных [97]. Интересной оказалась реакция карбодиимида с [СрРе(С0)2] К+, проходящая [c.45]

    Нефть представляет собой сложную жидкую смесь близкокипя-щих углеводородов и высокомолекулярных углеводородных соединений с гетероатомами кислорода, серы, азота и некоторых металлов. В нефти содержатся также в небольших концентрациях неуглеводородные соединения, органические кислоты и некоторые другие вещества. [c.16]

    Вследствие довольно высокой активности марганец легко окисляется, в особенности в порошкообразном состоянии, при нагревании кислородом, серой, галогенами. Компактный металл на воздухе устойчив, так как покрывается оксидной пленкой, которая препятствует дальнейшему оксилению металла. Еще более устойчивая пленка образуется при действии на Мп холодной азотной кислоты. Технеций и рений вступают в химическое ваимодействие с неметаллами при достаточно сильном нагревании. Так, при 400° С они сгорают в атмосфере кислорода, образуя Э2О,. [c.570]

    Превращения энергии при химических реакциях. Химические реакции протекают с выделением или с поглощением энергии. Обычно эта энергия выделяется или поглощается в виде теплоты. Так, горение, соединение металлов с серой или с хлором, нейтрализация кислот щелочами сопровождаются выделением значительных количеств теплоты. Наоборот, такие реакции как разложение карбоната кальция, образование оксида азота(II) из азота и кислорода требуют для своего протекаиия ненрерывного притока теплоты извне и тотчас же приостанавливаются, если нагревание прекращается. Ясно, что этп реакции протекают с поглощением теплоты. [c.166]

    Элементы главной подгруппы шестой группы периодпчсской системы это кислород, сера, селей, теллур и полоний. Последний из пнх — радиоактивный металл известны как природные, так и искусственно полученные его изотопы. [c.373]

    Щелочные металлы и их соединения широко используются технике. Литий применяется в ядерной энергетике. В частности, изотоп Li служит промышленным источником для производства трития, а изотоп Li используется как теплоноситель в урановых реакторах. Благодаря способности лития легко соединяться с водородом, азотом, кислородом, серой, ои применяется в металлургии для удаления следов этнх элементов из металлов и сплавов. LiF и Li l входят в состав флюсов, используемых при ]]лавке металлов и сварке магння и алюминия. Используется лтий и его соединения и в качестве топлива для ракет. Смазки, содержащие соединения лития, сохраняют свои с1юйства при температурах от —60 до - -150°С. Гидроксид лития входит в состав электролита щелочных аккумуляторов (см. 244), благодаря чему в 2—3 раза возрастает срок их службы. Применяется литий также в керамической, стекольной и других отраслях химической промышленности. Вообще, по значимости в современной технике этот металл является одним из важнейших редких элементов. [c.564]

    Применение металлического кальция связано с его высокой химической активностью. Он используется для восстановления из соединений некоторых металлов, например, урана, хрома, циркония, цезия, рубидия, для удаления из стали и из некоторых других сплавов кислорода, серы, для обезвоживания органических жггдко-стей, для поглощения остатков газов в вакуумных приборах. Кроме того, кальций служит легирующим компонентом некоторых свинцовых сплавов. [c.614]

    Сырьем для производства смазочных масел служат нефтяные фракции, выкипающие выше 350 °С. В этих фракциях концентрируются высокомолекулярные соединения нефти, представляющие собой сложные многокомпонентные смеси углевюдородов различных грушп и их гетеропроизводных, в молекулах которых содержатся атомы кислорода, серы, азота и некоторых металлов (никеля, ванадия и др.). Компоненты масляных фракций обладают различными свойствами, и содержание их в готовых маслах может быть полезным и необходимым или вредным и нежелательным. Поэтому наиболее распространенным путем переработки масляных фракций для получения масел является удаление из них нежелательных компонентов при максимально возможном сохранении желательных , способных обеспечить готовым продуктам необходимые физико-химические и эксплуатационные свойства. [c.7]

    Сул1,фиды меди в воде нерастворимы и с водой не взаимодействуют. При нагревании в атмосфере кислорода сульфиды меди подвергаются обжигу с образованием оксидов меди и диоксида серы. Сульфиды меди взаимодействуют ири нагревании с оксидами металлов, причем сера окисляется до ЗОг. Изучены диаграммы состояния систем, включающих сульфиды меди и мегаллическу о медь. [c.321]

    Элементорганические анионы, не имеющие связанных с металлами атомов кислорода, серы или азота, называют подобно радикалам, но окончание ио заменяют на ат , например ЫСи(СНз)2 диметилкупрат лития [(СвН5)зРЬ] трифенил- [c.194]

    Очень важна для эксплуатации топлив возможность снижать в них осадкообразование. Нерастворимые осадки, образующиеся под влиянием высокой температуры, действия металлов и кислорода воздуха, являются продуктами гл-убоких превращений наименее стабильных углеводородов топлива, а также кислород-, серу-и азотсодержащих соединений в окислительной среде. Значительную роль при осадкообразовании играет изменение коллоидного состояния продуктов окисления топлив под влиянием температуры. Нерастворимые осадки могут образовываться в результате коагуляции коллоидных частиц смол, асфальтенов и других продуктов окисления, происходящей при определенных температурах, характерных для каждого топлива. При дальнейшем повышении температуры эти частицы могут вновь диспергироваться или растворяться в топливе. Поэтому, вероятно, эффективными диспергирующими присадками, используемыми для улучшения условий фильтрования топлив при высоких температурах, могут служить некоторые типичные стабилизаторы коллоидных систем — пептизаторы. [c.253]

    Высококипящие фракции нефти наряду с индивидуальными углеводородами в значительном количестве содержат гетероор-ганические соединения, в состав которых одновременно входят углерод, водород, кислород, сера, азот и металлы. Эти соединения объединяют в группу смолисто-асфальтеновых веществ. По отношению к различным растворителям их подразделяют на четыре группы 1) нейтральные смолы, растворимые в легком бензине (петролейном эфире), пентане 2) асфальтеиы, нерастворимые в петролейном эфире, но растворимые в горячем бензоле  [c.24]

    Как уже указывалось, титан способен взаимодействовать с углеродом лишь при высоких температурах. В системе титан — углерод при этих условиях образуются очень твердые сплавы, содержащие карбид титана Т1С — кристаллическое металлоподобное вещество с температурой плавления 3140°С, и ряд твердых растворов. Карбид титана проводит электрический ток, легко сплавляется с металлами и другими карбидами, образуя при этом иногда чрезвычайно твердые тугоплавкие сплавы. При обычной температуре карбид титана довольно инертен, при высоких же температурах ведет себя подобно элементарному титану — реагирует с галогенами, кислородом, серой, азотом, а таклсе с кислотами и солями — окислителями с образованием продуктов, аналогичных получающимся при действии на элементарный титан. Подобные карбиду соединения титан образует с фосфором (фосфиды), кремнием (силиды), бором (бориды). [c.270]

    К высокомолекулярным соединениям нефти мы относим вещества молекулярного веса выше 400, независимо от того, имеют ли они чисто углеводородную природу или в состав их входят гетероатомы (кислород, сера, азот, металлы и т. д.). Вещества эти содержатся в тяжелой части нефти, имеющей температуру кипения выше 350° С [11. Самые большие молекулы веществ, входящих в состав нефтей, имеют молекулярный вес, в пределах от 3000 до 5000. Возможность наличия в нефтях более высокомолекулярных соедийений маловероятна. Наиболее высокомолекулярными соединениями нефти являются, ио-видимому, асфальтены Е литературе встречаются данные о тТШ —что асфальтены характеризуются молекулярными весами от 20 ООО до 200 ООО [2]. Однако эти высокие значения молекулярный вй С О асфальтенов, приводимые в работах отдельных исследователей, объясняются тем, что они не учитывают явления ассоциации молекул асфальтенов, которое наблюдается даже в разбавленных растворах при температурах ниже. 60—70° С. [c.12]

    В отсутствии влаги чистый металл химически стоек, не реагирует с кислородом, серой, галогенами, однако в высокодисперсном состоянии пирофорен. Техническое железо и его спла вы корродируют в атмосфере паров воды, оксида углерода (IV) и кислорода с образованием пористого слоя гидратированного оксида железа (II) ГеО пНаО. Не взаимодействует с щелочами. С углёродом при высоких температурах образует растворимый в металле карбид железа Feg (цементит) с содержанием угле-родаб,67% и температурой плавления 1550°С,атакже два типа твердых растворов. Железо так же образует многочисленные сплавы с другими металлами. [c.39]

    Наиболее высокомолекулярные гетероорганические вещества нефти, в состав которых одновременно входят углерод, водород, кислород, сера, а часто азот и металлы, называются смолисто-ас-фальтеновыми веществами. Летучесть их невелика, поэтому при разгонке нефти они концентрируются в основном в остаточных нефтепродуктах. В бензиновый дистиллят они не попадают. Чем выше пределы перегонки фракций, тем больше с ними перегоняется смол. Но доля их во всех дистиллятах не превышает 15% от общего количества в нефти. [c.40]

    Бенар обобщил результаты многочисленных исследований взаимодействия металлов с окислителем (кислородом, серой) в, условиях, когда возможно образование сорбционного монослоя, а не обычного оксида или сульфида. Атомы кислорода или серы образуют в условиях равновесия металл — окислитель химические связи с атомами металла (железа, никеля, кобальта, хрома, вольфрама, серебра, меди, палладия, платины), которые прочнее, чем связи М — О или М — S в соответствующих оксидах и сульфидах. Разница между теплотой образования оксида и начальной теплотой химической сорбции кислорода для серебра достигает 47 ккал/моль, для хрома—15 ккал/моль. Теплота химической сорбции серы на меди почти на 70% превышает теплоту образования U2S. [c.55]


Смотреть страницы где упоминается термин Металлы кислород и серу: [c.222]    [c.157]    [c.65]    [c.58]    [c.71]    [c.12]    [c.93]    [c.262]    [c.301]    [c.118]    [c.14]    [c.14]    [c.161]   
Органические синтезы через карбонилы металлов (1970) -- [ c.132 , c.133 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы с серой



© 2025 chem21.info Реклама на сайте