Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфор соединения с азотом, полимерны

    Бинарные соединения фосфора (V) с кислородом, серой, азотом полимерны. Все они построены из тетраэдрических структурных единиц типа РХ (РО4, PS4, PNJ  [c.372]

    Потребность в веп ествах со все более высокой термостойкостью проявилась особенно отчетливо, когда возникла необходимость в создании синтетических материалов, устойчивых при температурах 1000° и выше. Это требование явно выходит за пределы возможностей синтетических органических полимеров, термостойкость которых ограничивается несколькими сотнями градусов Цельсия в результате ограниченной устойчивости углерод-углеродных и углерод-водородных связей, содержащихся в молекулах этих веществ. Некоторое повышение термостойкости углеродсодержащих полимеров было достигнуто путем замены атомов водорода на фтор, однако в настоящее время очевидно, что для синтеза очень термостойких материалов необходимо исключить из них углерод-углеродные и углерод-водородные связи. Поэтому в настоящее время разработка методов синтеза высокотермостойких полимеров производится в области неорганических полимеров, причем особый интерес в этом отношении вызывают полимерные соединения таких элементов, как бор, фтор, кремний, фосфор и азот. [c.18]


    Многофункциональными присадками являются полимерные соединения, в макромолекулы которых входят различные функциональные группы, содержащие такие элементы, как фосфор, серу, азот и др. Для получения таких соединений либо непосредственно [c.202]

    П) гетероцепные высокомолекулярные соединения—основные полимерные цепи, помимо атомов углерода, содержат гетероатомы (кислород, азот, фосфор, серу и др.)  [c.438]

    Пятая группа периодической системы содержит различные элементы, весьма широко представленные в полимерах. Известны полимерные соединения, содержащие в своем составе следующие элементы пятой группы азот, фосфор, мышьяк, сурьму и висмут. [c.300]

    В целях придания многофункциональных свойств полимерным соединениям в их макромолекулы вводят различные функциональные группы, содержащие такие элементы, как фосфор, серу, азот и др. Для этого либо непосредственно подвергают полимеризации (или сополимеризации) мономеры, содержащие эти функциональные группы, либо обрабатывают полимер соединениями, содержащими эти группы. [c.203]

    Получение термостойких полимеров является одной из важнейших проблем современной химии высокомолекулярных соединений, так как этим в значительной степени определяются быстрые темпы развития различных областей новой техники. Синтез полимеров с циклами в цепи, замена атомов водорода на атомы фтора, строгая регулярность строения макромолекул, образование полимерных цепей из атомов кремния, кислорода и различных металлов, а также из атомов фосфора и азота позволяют создать новые полимерные материалы, отличающиеся высокой термической устойчивостью и химической стойкостью. Важное значение в повышении термостабильности пластиков имеет армирование полимерных материалов (асбо- и стеклонаполненные пластики и др.). [c.107]

    Как показывают данные этой таблицы, под влиянием молибдена увеличивается вдвое относительная доля полимерных соединений азота и фосфора (по отношению к мономерным). [c.437]

    В настоящем обзоре приведены данные о полимерных соединениях кремния с водородом, азотом, фосфором, кислородом галоидами и др. Включены также данные о синтетическом кремнеземе и плавленом кварце, синтетических полимерных кремневых кислотах, силикатах, слюдах и стекле. Обзорные статьи и диссертации сообщают преимущественно о получении и свойствах плавленого кварца [285—299], о методах полу- [c.307]

    Большой интерес вызывает в настоящее время химия полимерных соединений бора. Исследования связи бор— фосфор, бор—азот, бор—мышьяк и бор—сера в советской научной литературе освещены крайне недостаточно. Между тем энергии связей в борсодержащих полимерах довольно высоки. Так, для связи В—О она составляет 119,3 ккал, для связи В—N 104,3 /скал, в то время как для связи 5—5 она равна 63,0 ккал. [c.9]


    Полимерными соединениями, или полимерами, называют вещества, молекулы которых состоят из многочисленных элементарных звеньев одинаковой структуры. Элементарные структурные звенья соединены между собой ковалентными связями в длинные цепи линейного или разветвленного строения или же образуют эластичные или жесткие пространственные решетки. Своеобразно построенные, гигантские по размерам молекулы полимерных соединений обычно называют макромолекулами. Основная цепь макромолекул органических полимеров состоит из атомов углерода, иногда с чередованием атомов кислорода, серы, азота, фосфора. В макромолекуляр-ную цепь могут быть введены атомы кремния, титана, алюминия и других элементов, не содержащихся в природных органических соединениях. [c.9]

    Гетероцепные полимерные соединения, в макромолекулярных цепях которых, кроме атомов углерода, содержатся атомы кислорода, азота, серы, фосфора, т. е. атомы элементов, обычно входящих в состав органических соединений. К этой группе полимеров относят целлюлозу, белки, полиэфиры, полиамиды, полиуретаны, полиэпоксидные соединения, [c.17]

    Гетероцепные полимеры содержат в основных цепях макромолекул, кроме углерода, атомы элементов, которые обычно входят в состав органических веществ кислород, азот, сера, фосфор. Такие полимерные соединения синтезируют в большинстве случаев по реакции поликонденсации, реже методом Ступенчатой и ионной полимеризации. [c.396]

    И) гетероцепные высокомолекулярные соединения полимерные цепи их, помимо атомов углерода, содержат также гетероатомы (кислород, азот, серу, фосфор и др.)  [c.167]

    Наибольшее применение получили высокомолекулярные амины и их производные, гетероциклические соединения и их полимерные продукты, содержащие азот, серу, фосфор, кислород. [c.71]

    Гетероцепные соединения образуются обычно таким образом, что между отдельными атомами того или иного элемента включаются атомы другого элемента. Чаще всего включаются в эти гетероцепные соединения бор, углерод, кремний, азот, фосфор, кислород, сера, селен и мышьяк. Наиболее многочисленной группой среди них являются кислородные соединения — полимерные окислы, азотистые соединения — полимерные нитриды, углеродистые соединения — полимерные карбиды и борные соединения — полимерные бориды. [c.334]

    Для придания О. горючим полимерам широко используют химически активные антипирены, при взаимодействии к-рых с полимером в его состав вводятся атомы хло-)а, брома, фосфора, азота, бора, нек-рых металлов напр., кальция, бария, магния). При горении таких модифицированных нолимеров образуются ингибиторы воспламенения, горения (галогеноводороды, азот-, бор- и фосфорсодержащие соединения), а также защитные пленки (напр., окислов металлов) на поверхности материала. Так, при использовании полиакрилатов бария в полимерных композициях на поверхности материалов при горении образуется пленка окисла бария, способствующая самогашению и предотвращающая дальнейшее разрушение материала. [c.203]

    Интерес, который вызвала к себе эта область химии, и выбор указанных объектов исследования объясняются большим и разнообразным значением конденсированных форм фосфатов в народном хозяйстве. Являясь соединениями, содержаш ими основные элементы питания растений (фосфор, азот, калий), поли- и метафосфаты могут быть использованы в качестве комплексных удобрений. При этом, в отличие от солей ортофосфорной кислоты, эти соединения содержат более высокий процент питательных элементов и что самое важное — могут быть получены в нескольких полимерных и полиморфных модификациях, обладающ,их различной растворимостью в воде. Это свойство и было положено в основу поисков новых средств борьбы с химическими и физическими потерями питательных веществ (главным образом азота) при использовании минеральных удобрений, в основу создания новых форм удобрений, которые отличались бы медленной растворимостью и являлись бы удобрениями длительного действия. [c.151]

    Фосфор, как и сера, катеноген, т. е. может образовать гомонуклеарные цепочки и каркасы, а также всевозможные полимерные гетеронуклеарные соединения особенно большая склонность к полимеризации в V группе проявляется у сурьмы. Кислотные свойства ослабляются при переходе от соединений азота к фосфору и мышьяку с дальнейшим переходом к амфо-терности в случае сурьмы и к основным свойствам у висмута. [c.271]

    Фосфор образует большое количество гетероцепных полимеров. К их числу относятся окислы фосфора, полифосфорные кислоты, полифосфаты, полифосфонитрилхлорид и другие соединения фосфора с азотом, фосфиды некоторых металлов и фосфпнборипы. Фосфиды различных металлов представляют собой полимерные соединения. Так, было установлено, что структура фос( )пда кадмия состоит из каркаса ковалентно связанных между собой атомов кадмия и фосфора [290] для фосфида свинца показано, что вдоль оси С расположены нитеобразные молекулы, связанные между собой Ван-дер-Ваальсовыми силами [291], получены также фосфиды цинка, ртути и свинца. [c.352]


    Механизм антинирд рования соединениями фосфора достаточно сложен, выяснен еще только в самых общих чертах и в высокой степени зависит от природы защищаемого материала [5]. Но ясно следующее. Лучший эффект достигается, если фосфор входит в полимерную цепь, а не введен в виде низкомолекулярной добавки (перевод фосфора в форму ФОП может быть осуществлен и в ходе самого процесса горения) антипириру-ющее действие фосфора резко улучшается при комбинации последнего с хлором и особенно бромом или азотом (амипные формы), так как эти элементы дают при пиролизе газообразные ингибиторы горения летучих фосфор является наилучшим ингибитором горения твердой фазы (углистого остатка) — тления требуется введение малых количеств фосфорного антипирена, чтобы обеспечить оптимальную огнестойкость. [c.75]

    Характерным примером служат связи в фосфорнитрилхло-ридах. Эти соединения включают полимерную систему из структурных единиц (PN ) либо в виде кольца (ср. LVO и LVni), либо в виде открытой цепи с какими-либо концевыми группами (например, LIX). Рентгеноструктурные исследования показали, что все связи PN в LVH и LVHI имеют одинаковую длину, причем они значительно короче, чем можно было бы ожидать для ординарных связей. Это указывает на то, что атомы фосфора и азота соединены л-связями. Поскольку атомы фосфора используют все свои 3s- и Зр-АО для образования о-связей с четырьмя соседними атомами, я-связи должны относиться к типу pn-dn. [c.530]

    Большинство огнестойких материалов, рассмотренных в этом разделе, изготавливается с применением неорганических галогенсодержащих быстрококсую-щихся полимеров или антипирированных полимерных композиций с применением фосфор-, бор-, азот- и галогенсодержащих антипиренов, трехокиси сурьмы, силикатов металлов и им подобных соединений. В ряде случаев при введении антипиренов улучшаются прочность, водостойкость, электрическая прочность и некоторые другие свойства материалов. [c.99]

    В настоящей главе кратко разобраны только некоторые вопросы применения в маслах полимерных присадок и показаны основные физико-химические свойства некоторых из них. Судя по патентным данным, в настоящее время предлагается большое число различных полимеров, представляющих собой продукты взаимодействия полиолефинов с пятисернистым фосфором, серой, хлорсульфоновой кислотой, сернистыми и фосфорсодержащими соединениями, поли-олефины, содержащие щелочные и щелочно-земельные металлы, серу, кислород, различные сополимеры олефинов со стиролом, обработанные аналогичным образом. Предполагаются новые типы полимеров, относящиеся к классу полиметакрилатов, но содержащих серу, фосфор, хлор, азот, двухвалентные металлы и другие полимеры. [c.138]

    Далее остановимся на работах по синтезу, исследованию и применению многофункциональных присадок рассматриваемого типа, проводимых в ЙХП АН АзССР. Процесс синтеза полимерных многофункциональных присадок включает следующие стадии получение исходного полимерного соединения, взаимодействие его с сульфидом фосфора (V) (фойфоросернение) и нейтрализацию фосфоросерненного полимера различными агентами. Сотрудниками ИХП АН АзССР получен ряд полимерных многофункциональных присадок, наиболее эффективными из которых оказались присадка ИХП-388, содержащая серу, фосфор и металл, и присадка ИХП-361, содержащая серу, фосфор, азот и бор. Они самостоятельно и в композициях с другими присадками значительно улучшают свойства масел. [c.209]

    Молекулярные вещества. Атомы азота и фосфора образуют ковалентные связи как в соединениях между собой, так и со многими другими элементами. Их соединения с S, Se, Те представляют собой летучие молекулярные вещества. Примерами полимерных веществ могут служить BN, A1N, PsNs и др. Кристаллы BN и A1N можно рассматривать как огромные трехмерные молекулы (аналогия с алмазом). [c.533]

    Фосфор, как и азот, необходим для всех живых существ, так как он входит в состав некоторых белков как растительного, так и животного происхождения. В растениях фосфор содержится главным образом в белках семян, в животных организмах — в белках молока, крови, мозговой и нервной тканей. Кроме того, большое количество фосфора содержится в костях позвоночных животных в основном в виде соединений ЗСаз(Р04)2-Са(0Н)2 и ЗСаз(Р04)2-СаС0з-Н20. В виде кислотного остатка фосфорной кислоты 4>осфор входит в состав нуклеиновых кислот — сложных органических полимерных соединений, содержащихся во всех живых организмах. Эти кислоты принимают непосредственное участие в процессах передачи наследственных свойств живой клетки. [c.442]

    Уже первые эксперименты по синтезу органических соединений с участием фуллеренов продемонстрировали чрезвычайно широкое разнообразие возможных типов таких соединений (продукты присоединения углеводородных радикалов, водорода, фосфора, галогенов, металлов и их оксидов, одинарных и конденсированных бензольных колег) и их производных, оксидов азота, алкильных прогаводных и т.п.). Внимания заслуживают первые успешные попытки синтеза полимеров на основе Сбо- При этом молекулы Соо могут играть двоякую роль либо в качестве основы полимерной цепочки, либо в качестве соединительного элемента. [c.138]

    Азот-, фосфор- или кислородсодержащие органические соединения, например акрилонитрил, метакрил онитрил, винил пиридин и его производные, акриловые и метакриловые эфиры, винилизобутиловый эфир, винилацетат, меркаптобензорь ная кислота образуют при взаимодействии с БК при инициировании органическими пероксидами привитые сополимеры, которые можно использовать как адгезивы и клеи для крепления БК с натуральными и синтетическими волокнами, металлами, различными эластомерами. Сообщается о модификации Б К при взаимодействии с ангидридами органических кислот и альдегадами, а также по реакциям карбоксилирования, окисления, эпоксидирования [18]. Практическое использование этих полимерных продуктов пока ограничено. Большой интерес представляют смеси БК и его галогенпроизводных с другими эластомерами. [c.283]

    Метод конденсации позволяет получить водород высокой степени чистоты. Например, при охлаждении смеси газов до мпературы жидкого азота (- 77 К) оксиды углерода и углеводороды переходят в жидкое состояние. Чистота получаемого водорода составляет 99,95%. Высокую степень чистоты можно получить и электрохимическим способом с помощью ячейки с твердополимерным электролитом [12]. Все более широкое применение для разделения газов находят селективно проницаемые мембраны, в частности полимерные мембраны [86, с. 1273—1278]. Наиболее чистый водород можно получить в результате диффузионного разделения через проницаемую для водорода мембрану из палладиевого сплава [32]. Этот способ обеспечивает получение водорода чистотой до 99,9999%. При использовании электрохимического и диффузионного методов очистки необходима предварительная очистка газов от каталитических ядов соединений серы, мышьяка, фосфора и др- [c.105]

    Присутствие в молекулах мономеров наряду с атомом фосфора галогенов и азота позволяет усилить антипирирующее действие данных соединений при введении их в макромолекулы полимеров. Этот факт усилил интерес к исследованию синтеза и полимеризации фосфор-, галоид-, азотсодержащих мономеров, в том числе метакрилатов [47-50]. Так как с увеличением доли фосфорсодержащих звеньев наряду с ростом огнеустойчивости происходит снижение физико-механических показателей сополимеров фосфорсодержащих монометакрилатов, одной из важнейших задач является установление оптимальных составов сополимеров, обеспечивающих, наряду с достижением определенной степени огнестойкости, необходимый уровень их физико-механических характеристик. Оптимальное количество фосфорного компонента, позволяющее получать полимерные материалы с пониженной горючестью и высокими физико-механическими показателями в зависимости от природы сомономеров и состава композиций, составляет от 10 до 50% мае, [37, 43, 51], [c.103]

    Химия фосфорорганических соединений за последние два десятилетия переживает период бурного развития. Это связано прежде всего с тем широким применением, которое нашли эти соединения в самых различных областях народного хозяйства. С каждым годом расширяется использование фосфорорганических соединений в качестве инсектицидов, фунгицидов, гербицидов и нематоцидов в сельском хозяйстве, лекарственных препаратов в медицине, мономеров, пластификаторов и стабилизаторов при производстве полимерных материалов, экстрагентов, растворителей, катализаторов, добавок, придающих материалам огнестойкость, улучшающих работу смазочных масел, и др. Большое практическое значение фосфорорганических соединений стимулировало исследования в области дальнейшего развития, расширения и изучения ранее известных реакций, строения и реакционной способности органических производных фосфора, привело к открытию новых путей синтеза и ряда новых интересных реакций. К реакциям этого типа следует отнести и рассматриваемую в обзоре реакцию присоединения фосфорорганических соединений с подвижным атомом водорода фосфинов, неполных эфиров фосфористой, тиофосфористой, фосфинистой и дитиофосфорной кислот, амидов кислот фосфора, фосфорсодержащих соединений с активной метиленовой группой и некоторых других типов соединений. К настоящему времени изучены реакции присоединения их по кратным углерод-углеродным, двойным углерод-кислородной, углерод-азотной, азот-азотной и азот-кислородной связям. В результате этих реакций образуются фосфины разнообразного строения, полные эфиры фосфиновых, тиофосфиновых, дитиофосфорных кислот, алкилфосфиновые и фосфинистые кислоты, эфироамиды фосфорных и эфироимиды фосфиновых кислот, а также некоторые другие типы органических соединений фосфора. Отдельные реакции этого типа, как, например, присоединение фосфинов, фосфористой и фос-форноватистой кислот к карбонильным соединениям, были известны еще в конце прошлого — начале нашего столетия. Однако в последующие годы они или не получили дальнейшего развития, или использование их было крайне ограниченным. Интерес к этим реакциям вновь проявился лишь спустя несколько десятилетий. Ряд новых [c.9]

    Примеры соединений, в которых фосфор образует кратные связи, аналогичные кратным связям углерода, азота или кислорода, редки в этом отношении фосфор сходен с другими элементами второго большого периода. Условия эффективного перекрывания при образовании я-связи, которая легко образуется за счет 2р-ор-биталей соседних атомов, связанных 2ра-связью, с трудом выполняются для Зр-орбнталей, связанных Зра-связью. Для объяснения этого эффекта предлол<ено много гипотез [7], однако большинство описанных соединений, которые, как полагают, содержат в своем составе трехвалентный фосфор, связанный кратной связью, являются в действительности полимерными продуктами. [c.596]

    Все полимерные минеральные соединения он разделил на три большие группы. Первая включает в себя твердые вещества с ионными связями. Звенья этих соединений образованы в результате ассоциации простых ионов или веществ с противоположной полярностью. Вторая группа состоит из металлов, внут-риметаллических и полуметаллических соединений. Третья группа содержит вещества с устойчивым скелетом, образованным из ковалентно—соединенных атомов. Эта последняя группа веществ подробно рассмотрена автором, причем особенно детально обсуждены элементарная сера и ее соединения с другими элементами — водородом, азотом и кислородом. Все рассмотренные соединения (элементарная сера, сульфаны и их замещенные, азотсодержащие циклические соединения серы и другие) обладают скелетом, построенным из устойчивых цепей, образованных ковалентно—соединенными атомами. Аналогичным образом построено значительное число соединений и других элементов фосфора, мышьяка, сурьмы, кремния, германия, бора, алюминия и некоторых других. Подчеркивается, что все рассмотренные соединения отличаются устойчивостью, определяемой ковалентным соединением цепей атомов. Показано также, что одновалентные элементы объединяются в цепь в виде исключения, ро донорно—акцепторному механизму, как это имеет место среди галогенидов металлов. Двухвалентные элементы уже образуют цепи, гомогенные или смешанные. Кроме того, они играют роль мостов в двух- и трехмерных образованиях. [c.401]

    Карбоцепные полимеры получают в основном по реакциям полимеризации, гетероцепные полимеры синтезируют по реакциям поликонденсации. Гетероцепные полимерные соединения отличаются наличием в элементарных звеньях неуглеродных атомов, таких, как кислород, азот, сера и фосфор, т. е. атомов, которые обычно входят в состав органических веществ. Представителями гетероцепных полимеров являются полимерные простые эфиры (полиформальдегид, пентон, полиэпоксиды), полимерные сложные эфиры (полиэтилентерефталат, поликарбонаты), полимерные ангидриды, полиамины (полиаминофенилметилен), полиамиды, полимочевины, полиуретаны, политиоэфиры, полисульфиды. Физико-механические характеристики некоторых гетероцепных полимерных соединений приведены в табл. 2-33. [c.125]

    Органические высокомолекулярные соединения разделяют по составу основной цепи макромолекул на три группы кар-боцепные — полимерные цепи состоят из углеродных атомов гетероцепные — полимерные цепи помимо атомов углерода содержат гетероатомы (кислорода, азота, серы, фосфора и др.) элементоорганические — макромолекулы содержат атомы элементов, не входящих в состав природных органических соединений (кремний, алюминий, титан, бор, свинец, сурьма, олово и др.). [c.69]

    Для получения более полной характеристики исследуемого полимерного соединения необходимо помимо предварительных испытаний нровести качественный анализ на присутствие в исследуемом образце таких элементов,. как хлор, азот,, сера, фосфор, фтор, кремний и др. Указанные элементы после деструкции полимера дают характерные качественные реакции,, позволяющие доказать их присутствие. [c.106]


Смотреть страницы где упоминается термин Фосфор соединения с азотом, полимерны: [c.235]    [c.362]    [c.33]    [c.235]    [c.417]    [c.205]    [c.56]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8 (1966) -- [ c.612 ]




ПОИСК





Смотрите так же термины и статьи:

Соединения азота и азота

Фосфорила соединения



© 2024 chem21.info Реклама на сайте