Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрофотометрический анализ в инфракрасной области спектра

    Приборы, применяемые для спектрофотометрического анализа в инфракрасной области спектра [c.257]

    Спектрофотометрический метод анализа основан на качественном и количественном изучении светопоглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 500 ООО до 760 нм), видимой (от 760 до 400 нм) и ультрафиолетовой (от 400 до 1 нм). Задача спектрофотометрического анализа — определение концентрации вещества измерением оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома измеряют оптическую плотность желтого раствора хромата, поглощающего свет в сине-фиолетовой части видимого спектра. [c.453]


    В спектрофотометрических методах применяют сложные приборы - спектрофотометры, позволяющие проводить анализ как окрашенных, так и бесцветных соединений с помощью избирательного поглощения монохроматического света в видимой, ультрафиолетовой или ближней инфракрасной областях спектра. Поскольку спектр поглощения каждого вещества имеет вполне определенную форму, спектрофотометр может быть применен как для качественного, так и для количественного анализа. [c.184]

    В спектрофотометрических методах применяют спектрофотометры — приборы, позволяющие проводить анализ как окрашенных, так и бесцветных соединений по избирательному поглощению монохроматического излучения в видимой, ультрафиолетовой и инфракрасной областях спектра. Природа полос поглощения в ультрафиолетовой и видимой областях спектра связана с различными электронными переходами в [c.33]

    Спектрофотометрический анализ проводят с применением монохроматического излучения как в видимом, так и в примыкающем к нему ультрафиолетовом и инфракрасном участках спектра, что дает возможность работать с широким диапазоном волн. Спектрофотомет-рия, как и колориметрия, основана на законе светопоглощения— законе Бугера—Ламберта — Бера. Приборы, применяемые в спектро-фотометрии, более сложны, чем приборы, используемые в фотоколориметрии. Наиболее простым, точным и удобным в работе является спектрофотометр СФ-4. Прибор снабжен кварцевой оптикой и позволяет измерять оптическую плотность или пропускание в области 210—1100 нм, т. е. охватывает ближнюю ультрафиолетовую, видимую и ближнюю инфракрасные области спектра. [c.347]

    Различия в устройстве оптических приборов, применяемых для спектрального разложения света, делают возможным спектрофотометрический анализ в видимой, ультрафиолетовой и инфракрасной областях спектра. [c.358]

    Для определения относительно больших количеств элементов, находящихся в экстракте в виде внутрикомплексных соединений, можно, вероятно, использовать поглощение и в инфракрасной области спектра. Чувствительность такого определения будет, по-видимому, довольно низкой, но избирательность, которая зависит от различий ИК-спектров комплексов различных металлов с данным реагентом, может быть удовлетворительной. Исследования в этом направлении, очевидно, не проводились. Имеются, однако, работы, в которых для анализа смесей твердых оксихинолинатов были использованы различия в ИК-спектрах этих соединений [574—578]. Например, анализировали смесь оксихинолинатов лантана и иттрия ИК-спектры этих комплексов заметно различаются [575]. Поисковые исследования по использованию подобных различий для экстракционно-спектрофотометрического определения представляли бы интерес. [c.188]


    Методы спектрофотометрического анализа основаны на качественном и количественном изучении спектров поглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 0,76 до 500 мк), видимой (от 0,76 до 0,4 мк) и ультрафиолетовой (от 0,4 до 0,01 мк). Задача спектрофотометрического анализа — определение концентрации вещества путем измерения оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома исследуют оптическую плотность раствора хромата желтого цвета, поглощающего свет в сине-фиолетовой части видимого спектра. При проведении фотометрического анализа необходимо создать оптимальные физико-химические условия (избыток реактива, светопреломление растворителя, pH раствора, концентрацию, температуру). Фотометрический анализ применяют для определения соединений различных типов окрашенных анионов кислот, перманганата, гидратированных катионов меди (II), никеля (II), роданидных комплексов железа (III), кобальта (II), различных гетерополикислот фосфора, мышьяка, кремния, перекисных соединений титана, ванадия, молибдена, лаков различных металлов с органическими красителями и др. Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 25). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бутиловый, амиловый спирт), хлорпроизводные (хлороформ, четыреххлористый углерод) и др. Иод можно извлечь бензолом, сероуглеродом, хлорное железо — этиловым или изопропиловым эфиром. [c.568]

    Спектрофотометрический анализ в инфракрасной области спектра.............484 [c.9]

    Спектрофотометрический анализ в инфракрасной области спектра [c.484]

    Другим преимуществом спектрофотометрического анализа является возможность исследования бинарных и многокомпонентных систем путем измерения оптической плотности раствора при различных длинах волн монохроматического света, включая ультрафиолетовую видимую и инфракрасную области спектра. [c.73]

    Принцип анализа. Метод основан на экстракции нефтепродуктов из воды тетрахлоридом углерода, хроматографическом отделении нефтепродуктов от полярных углеводородов и примесей воды не нефтяного происхождения в колонке с активным оксидом алюминия и на дальнейшем спектрофотометрическом определении в инфракрасной области спектра. В области волновых чисел 2860 2930 и 2960 см в нефтепродуктах наблюдаются три характеристические полосы поглощения света, обусловленные наличием в углеводородах нефти структурных групп СНз, СНг и СН. [c.287]

    Выпускаемые нашей промыщленностью изооктан и циклогексан реактивных квалификаций не могут быть применены в качестве растворителей для спектрофотометрического анализа в ультрафиолетовой и инфракрасной областях спектра. [c.432]

    Спектрофотометрический метод всегда использует монохроматический свет, который может быть получен при применении специальных источников излучения (ртутные, водородные лампы, лампы накаливания) или спектрального прибора, который выделяет свет той или иной длины волны. Этот метод дает возможность проводить анализ в ультрафиолетовой, видимой и ближней инфракрасной областях спектра. [c.176]

    При объяснении принципа устройства приборов для абсорбционного спектрального анализа следует напомнить учащимся, что различают колориметрический и спектрофотометрический методы анализа. В первом случае измеряют поглощение окрашенными растворами световых лучей широких участков видимого спектра или всего видимого спектра. Во втором случае измеряют поглощение монохроматического света и этот метод используется не только для видимой, но и для ультрафиолетовой и инфракрасной областей спектра. [c.204]

    Затем мастер знакомит учащихся с приборами для спектрофотометрического анализа в инфракрасной области спектра, рассказывает об их назначении, области применения и демонстрирует приборы в работе. При этом важно обратить внимание учащихся на то, что призмы и кюветы для инфра- [c.210]

    В спектрофотометрических методах применяют более сложные приборы — спектрофотометры, позволяющие проводить анализ как окрашенных, так и бесцветных соединений по избирательному поглощению монохроматического света в видимой, ультрафиолетовой и инфракрасной областях спектра. Наиболее совершенные спектрофотометрические методы анализа характеризуются высокой точностью [погрешность определения 1—0,5% (отн.)]. Это, прежде всего, относится к дифференциальной спектрофотометрии и спектрофотометрическому титрованию,. применяющимся для определения веществ в широком интервале концентраций, особенно при больших содержаниях. При соответствующих условиях эти методы практически не уступают по точности классическим методам анализа и применяются при аттестации аналитических методик и стандартных образцов. [c.9]


    Абсорбционный спектральный анализ в ультрафиолетовой, видимой и инфракрасной областях спектра. Различают спектрофотометрический и фотоколориметрический методы. Спектрофотометрический метод анализа основан на измерении поглощения света (монохроматического излучения) определенной длины волны, которая соответствует максимуму кривой поглощения вещества. Фотоколориметрический метод анализа основан на измерении свето-поглощения или определении спектра поглощения в приборах — фотоколориметрах в видимом участке спектра. [c.349]

    При спектрофотометрическом методе анализа измеряют поглощение монохроматического света. Это усложняет конструкцию приборов, но дает большие аналитические возможности по сравнению с колориметрическим методом. Спектрофотометрический метод используется не только для видимой, но и для ультрафиолетовой и инфракрасной областей спектра. [c.206]

    При фотоколориметрическом методе анализа измеряют поглощение световых лучей широких участков видимого спектра. При спектрофотометрическом анализе измеряют поглощение монохроматического света. Спектрофотометрический анализ используется для видимой, ультрафиолетовой и ближней инфракрасной областей спектра. [c.94]

    Более эффективен спектрофотометрический метод, основанный на измерении поглощения монохроматического света. Выбор узкой области частот спектра позволяет повысить чувствительность и точность анализа и уменьшить влияние других веществ, находящихся в растворе. Например, можно определить малое содержание ксантогенатных ионов, измеряя оптическую плотность их водных или водно-спиртовых растворов в ультрафиолетовой области при длине волны А, = = 226 и 301 нм. Для определения содержания алифатических аминов используют их способность давать окрашенные комплексы с бин-доном или метилоранжем, экстрагируемые органическими растворителями. При наличии интенсивных характеристических полос поглощения в инфракрасной области спектра их также можно использовать для количественного анализа растворов реагентов. [c.289]

    Спектр поглощения цианокобаламина в ультрафиолетовом и видимом свете, измеренный в водном растворе или в растворе метилового спирта, имеет максимумы 278, 361, 525 и 550 нм ( / 4( И5, 204, 57 и 63 соответственно) 17, 9, 101. Максимум поглощения при 278 нм, по-видимому, относится к бензимидазольной части молекулы. В других полосах спектра наблюдается некоторое подобие спектру поглощения порфирина 111]. При спектрофотометрическом анализе цианокобаламина соотношение абсорбции должно быть при длинах волн (нм) 361/278 как 1,70—1,90 и 361/550 как 3,15—3,40. Спектр поглощения цианокобаламина измерен в инфракрасной области 112, 131. [c.578]

    Спектрофотометрический анализ используется на всех стадиях деструктивного анализа. Выделенные продукты могут быть дифференцированы по их специфическому поглощению в ультрафиолетовой и видимой областях спектра. Наряду с определением температуры плавления, удельного вращения и измерением инфракрасного спектра исследование спектра поглощения в ультрафиолетовой области представляет собой необходимую часть изучения физических констант соединения. В некоторых случаях (например, каротиноиды и витамины А, К, D) интенсивность максимумов поглощения является наиболее надежным критерием [c.114]

    В спектрофотометрических методах применяют более сложные приборы — спектрофотометры, позволяющие проводить анализ как окрашенных, так и бесцветных соединений по избирательному поглощению монохроматического света в видимой ( 1 = 400-7-700 нм), ультрафиолетовой (Л = 200 4-400 нм) или ближней инфракрасной (Я = 700- -1500 нм) областях спектра. Ввиду того, что спектр поглощения каждого поглощающего вещества имеет вполне определенную форму, спектрофотометр может быть применен как для количественного, так и качественного анализа химических соединений. [c.329]

    Оптические методы используют связь между составом анализируемого вещества и его оптическими свойствами. К ним относится абсорбционный спектральный анализ в ультрафиолетовой, видимой и инфракрасной областях. Он основан на способности атомов и молекул поглощать излучение с определенной длиной волны. В зависимости от типа приборов различают колориметрический, фотоколориметрический и спектрофотометрический методы. Последний метод применяют для анализа во всех трех областях спектра. Нефелометрический и турбидиметрический методы основаны на явлении отражения или рассеивания света дисперсиями твердых веществ в жидкостях. Рефрактометрический метод основан на способности различных веществ по-разному преломлять проходящий свет. Эмиссионный спектральный анализ основан на способности атомов каждого элемента в определенных условиях испускать волны определенной длины. [c.194]

    Спектрофотометрический анализ в инфракрасной области ведут при помощи инфракрасных спектрометров ИКС-16 или ИКС-22А. Спектрофотометр ИКС-16 предназначен для регистрации спектров поглощения в интервале 0,75—25 мкм. Это двухлучевой прибор с автоматической записью спектров поглощения. Источником инфракрасного излучения в ИКС-16 служит силитовый стержень, нагреваемый электрическим током. Излучение силитового стержня с помощью системы зеркал делится на два одинаковых потока. [c.225]

    Последнее обстоятельство имеет весьма важное значение для определения концентрации нефтепродуктов в воде. Рекомендуемые методики не учитывают возможности содержания ароматических соединений в нефтепродуктах, что может привести к значительным ошибкам при анализе некоторых категорий сточных вод промышленных предприятий (нефтеперерабатывающих заводов, автозаправочных станций, нефтебаз, автохозяйств и др.). При спектрофотометрическом анализе в инфракрасной области в дополнение к анализируемым полосам поглощения частотой 2800— 3000 см необходимо осуществлять контроль спектров поглощения частотой 3000—3100 см , характеризующих наличие ароматических углеводородов. [c.129]

    Спектрофотометрическим определением связей А1—Н в инфракрасной области спектра занимались Гофман и Шомбург[2]. Этот способ для серийных анализов требует довольно сложной аппаратуры и большой затраты времени и дает только чисто качественную характеристику, когда содержание НАЩа в пробе ниже 2%. Именно с этой областью чаще всего приходится сталкиваться. [c.35]

    В спектрофотометрических методах применяют спектрофот метры — приборы, позволяющие проводить анализ как окраше ных, так и бесцветных соединений по избирательному поглощ нию монохроматического излучения в видимой, ультрафиолет вой и инфракрасной областях спектра. Природа полос поглощ ния в ультрафиолетовой и видимой областях спектра связана различными электронными переходами в поглощающих молек лах и ионах (электронные спектры) в инфракрасной области 01 связана с колебательными переходами и изменением колебател ных состояний ядер, входящих в молекулу поглощающего вещ ства (колебательные спектры). [c.164]

    В последнее время при определении цветности воды все больше стали применять инструментальные методики, основанные на измерении ее оптической плотности [39]. Для этих целей используют как общеаналитические фотоэлектроколориметры и спектрофотометры, так и специальные приборы, разработанные для контроля цветности воды [40, 41]. Фотоколориметрический анализ проводится на основе измерения поглощения видимого света без его предварительной монохроматизации, используется непосредственно белый свет или свет, прошедший через светофильтры с широкой полосой пропускания. В спектрофотометрическом анализе определяется поглощение монохроматического излучения в видимой и примыкающей к ней ультрафиолетовой и инфракрасной областях спектра. [c.49]

    Применение спектрофотометрического анализа в инфракрасной области спектра. В настоящее время изучены методы анализа многих соединений и смесей. Особенно хорошо разработаны методы анализа углеводородов нефтяных погоно1в. Так как в спектрах всех углеводородов имеются характерные полосы поглощения, то можно определить содержание насыщенных алифатических углеводородов, нафтенов, олефинов и ароматических углеводородов. Обычно исследуемый нефтяной погон разделяют перегонкой на фракции. В каждой фракции можно определить 4—5 компонентов описанным выше методом. Так как вода сильно поглощает инфракрасные лучи, в качестве растворителей применяют в спектральной области от 1 до 10 ц четыреххлористый углерод, а в области от 10 до 25 м- — сероуглерод. [c.485]

    В одной из работ [29] описаны различные усовершенствования, внесенные в выпускаемые промышленностью приборы. В общем не отмечено сколько-нибудь значительных Преимуществ термостолбиков по сравнению с фотоэлементами при работе с видимой, ультрафиолетовой и ближней инфракрасной областях спектра, но они являются наиболее удобными приемниками для излучения, принадлежащего к той части инфракрасной области, которая лежит за пределами применимости фотоэлементов и вместе с тем оказывается особенно выгодной для измерения светопропускания некоторых веществ. Существует возможность создания фотометрических методов для инфракрасной области с применением светофильтров и термостолбиков или болометров. Эти методы также, подобны используемым в настоящее время для этой области спек-трофотометрическим методам анализа (см. гл. XXIV, стр. 165), как и описанные в настоящей главе методы с применением светофильтров подобны спектрофотометрическим методам для видимой и ультрафиолетовой областей. [c.656]

    Спектрофотометрический анализ в инфракрасной области основан на поглощении излучений в инфракрасной (ИК) области. В практической инфракрасной спектроскопии измерения проводятся в интервале 0,7—20 мкм. Спектры поглощения в ИК области связаны с колебательно-врашательными уровнями атомов в молекуле. При поглощении фотона с энергией менее 80 кДж молекула способна лишь на изменение колебаний атомов, но не на электронный переход (не хватает энергии). Молекула переходит из одного колебательного состояния в другое. [c.113]


Смотреть страницы где упоминается термин Спектрофотометрический анализ в инфракрасной области спектра: [c.175]    [c.286]    [c.162]    [c.204]    [c.154]    [c.34]    [c.34]   
Смотреть главы в:

Аналитическая химия -> Спектрофотометрический анализ в инфракрасной области спектра


Основы аналитической химии Кн 3 Издание 2 (1977) -- [ c.268 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ спектров

Спектрофотометрические

Спектрофотометрический анализ

область спектра



© 2025 chem21.info Реклама на сайте