Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ качественный идентификация разделяемых компонентов

    Методы разделения занимают в аналитической химии особое место. Окружающий нас мир — мир сложных смесей, а известные методы количественного анализа, как правило, эффективны только для определения индивидуальных веществ или смесей известного состава их применение для анализа многокомпонентных смесей в общем случае ограничено. Поэтому в аналитической химии в последние десятилетия широкое распространение получили гибридные методы [1], сочетающие методы разделения и количественного определения. Одним из наиболее ярких примеров такого сочетания является хромато-масс-спектрометрия, в которой анализируемую смесь вначале разделяют на газовом или жидкостном хроматографе на отдельные компоненты, а затем проводят качественную идентификацию и количественное определение на масс-спектрометре. Большой вклад в развитие этого метода внесли В. Л. Тальрозе и его сотрудники [21. [c.5]


    Особым разделом аналитической химии является качественный фазовый анализ — разделение и идентификация отдельных фаз гетерогенной системы. Объектами исследования в фазовом анализе являются металлы, сплавы, минералы, руды. С помощью фазового анализа определяют состав неметаллических включений в металлах (оксидов, сульфидов, нитридов, карбидов), изучают распределение легирующих элементов в многофазных сплавах. Минералы в большинстве случаев содержат различные примеси в форме включений и в то же время минералы являются фазовыми составляющими руд как гетерофазных систем. Для разработки рационального технологического процесса отделения ценных компонентов руды от пустой породы и дальнейшей переработки концентрата необходимо знать минеральный состав руды. [c.449]

    Газовая хроматография является в настоящее время основным методом качественного и количественного анализа летучих органических соединений [2, 5, 132—134). Как известно, инструментальная хроматография является гибридным методом [134] хроматографическая колонка разделяет компоненты пробы на отдельные зоны, а детектор обычно измеряет концентрацию разделенных компонентов в газе-носителе после их выхода из колонки. Хроматографическая колонка обычно выполняет две функции 1) разделяет смеси на отдельные компоненты и 2) является источником информации о величинах удерживания (времени удерживания или объеме удерживания), на основании которых проводится хроматографическая идентификация компонентов исследуемой смеси. [c.36]

    В настоящей главе будут рассмотрены методы качественно-то анализа смесей. Для детальной идентификации компонентов сложной смеси часто недостаточно разделения ее на одной колонке, а приходится прибегать к сложной схеме анализа, представляющей целый комплекс методов. Разумеется, многоступенчатые схемы используются не только для идентификации отдельных соединений, но и для ускорения анализа такие схе-сы также рассматриваются в настоящей главе. Отдельный раздел посвящен применению хроматографических методов определения физико-химических свойств анализируемых смесей или их компонентов. [c.191]

    В предыдущих главах были обсуждены теоретические и практические предпосылки газохроматографического анализа. Теперь можно перейти к важной проблеме качественной интерпретации полученных результатов анализа. Трудность качественного анализа смеси зависит, с одной стороны, от достигаемого разделения отдельных компонентов, а с другой — от знания химической природы и происхождения пробы. Само собой разумеется, что идентификация компонентов пробы, о которой ничего не известно, более трудна по сравнению с анализом смеси известного происхождения, содержащей определенные классы химических соединений или главные компоненты. При анализе смеси прежде всего стремятся достигнуть наилучшего разделения компонентов, так как перекрывание пиков затрудняет идентификацию. В связи с этим часто применяют две или несколько неподвижных фаз с различными свойствами. В особенно трудных случаях с помощью одних лишь хроматографических методов часто не достигают поставленной цели. Тогда до газохроматографического анализа полезно проводить предварительное разделение другими физикохимическими методами или селективно превращать определенные компоненты пробы в соединения, которые лучше разделяются и проще анализируются. С этой точки зрения в настоящей главе и в следующих главах будут обсуждены пре- [c.228]


    Иногда применяют следующий прием. Смесь разделяют на отдельные фракции, содержащие различные компоненты, снимают спектры фракций и сравнивают их со спектром исходной смеси. Для качественного анализа многокомпонентных смесей (как и при идентификации отдельных соединений) вместо обычных каталогов спектров можно использовать коллекцию спектров, изданную в виде перфокарт. [c.37]

    Метод газовой хроматографии является одним из самых современных методов анализа. Его отличительные черты — экспрессность, высокая точность, чувствительность, возможность автоматизации. С помощью этого метода могут быть решены многие аналитические проблемы выбором хроматографической системы и рабочих условий. Широкий набор стационарных жидких фаз и адсорбентов, с одной стороны, программирование температуры, высокое давление, специфические методы детектирования, с другой стороны, позволяют разделять и количественно определять соединения с едва заметной разницей в давлении пара. Степень универсальности и гибкости метода газовой хроматографии во многом определяется существующим техническим уровнем аппаратуры. Если в качественной газовой хроматографии надежная идентификация компонентов смеси может быть чаще всего обеспечена лишь сочетанием с други- [c.70]

    В предыдущих главах были рассмотрены теоретические и практические предпосылки газохроматографического анализа. Перед аналитиком стоит важная проблема качественной интерпретации полученных результатов анализа. Трудность качественного анализа смеси зависит, с одной стороны, от того, насколько хорошо разделяются отдельные компоненты, а с другой — от того, насколько известна химическая природа и происхождение пробы. Само собой попятно, что идентификация компонентов в совершенно неизвестной пробе вызывает больше трудностей, чем качественный анализ таких смесей, происхождение которых позволяет предполагать присутствие определенных классов химических веществ или некоторых основных компонентов. При анализе какой-либо смеси на первый план выдвигается стремление достигнуть по возможности лучшего разделения компонентов, так как наложение пиков затрудняет идентификацию. С этой точкп зрения часто рекомендуется использовать две или несколько неподвижных фаз с различными свойствами. При особенно трудных проблемах анализа методы идентификации, основанные только на самой газовой хроматографии, часто не приводят к цели. В таких случаях до газохроматографического анализа целесообразно проводить предварительное разделение компонентов другими физикохимическими методами или селективное превращение определенных компонентов в пробе для получения веществ, которые легче разделить и анализировать. [c.232]

    Современный способ анализа органического образца предполагает использование газо-жидкостной хроматографии, которая обеспечивает не только разделение смеси на компоненты, их качественную идентификацию, но и количественное определение. Еще большие возможности открывает сочетание хроматографии с масс-спек-трометрией (хроматомасс-спектрометрия), позволяющее не только разделить, но и надежно идентифихщровать индивидуальные составляющие сложных смесей. Применение этих современных методов возможно в хорошо технически оснащенных лабораториях. [c.459]

    Газовый хроматограф дает химику исключительную возможность разделять компоненты очень сложных смесей, что используется для их качественного анализа. Однако идентификация выделенных компонен-, тов зависит от изобретательности и возможностей аналитика. [c.532]

    Керосин представляет собой смесь насыщенных углеводородов С12—С20, кипящих в интервале 175—325 °С. Как из чрстой пробы, так и из сточной воды, содержащей множество компонентов, керосин можно выделить по методике, аналогичной методике экстракции и очистки бензина. При анализе стандартной пробы керосина, (0,001 мл на 20 мл гексана) на той же колонке, но с более высокой максимальной температурой (250°С), первый пик появляется при 143°С, что соответствует н-декану. Затем элюируются все остальные пики до тетрадекана (при 191 °С). Начиная с этого момента и кончая температурой 250°С, при которой элюирование компонентов керосина заканчивается, на хроматограмме появляет ся ряд небольших пиков при непрерывном подъеме нулевой линии (см. рис. 16.1,б). Эта хроматограмма соответствует пробе, содержащей 0,001 мкл керосина. Для качественной идентификации керосина лучше подходит хроматограмма, изображенная на рис. 16.3. Появление пиков на этой хроматограмме является следствием двух факторов. Во-первых, число изомеров компонентов керосина при переходе от пентадекана к эйкозану резко увеличивается (угле- водород С20 имеет более 350 000 изомеров) и на колонке длиной 1,8 м нельзя разделить даже сотую часть их. Для решения этой задачи нужны капиллярные колонки длиной от 100 до 300 м. [c.524]


    При ХМС анализе идентификация компонентов анализируемых смесей осуществляется обычно по характеристическим ионам в масс спектрах и относительным индексам удерживания По лучение и того и другого вида данных сильно затрудняется, а часто становится вообще невозможным, если хроматографи ческие пики анализируемых компонентов не разделены Однако многомерный характер информации ХМС благодаря многока нальному детектированию дает возможность оценивать наличие нескольких компонентов в одном хроматографическом пике и осуществлять их раздельное определение (как качественное, так и количественное) не только в случае неполного разделе ния, но иногда и в случае полного перекрывания Если в масс спектрах неразделенных компонентов имеются специфические пики, характеризующие каждый из компонентов и отсутствующие [c.65]

    Преимущества качественного масс-спектрометрического анализа значительно возрастают при условии, что один из исследуемых продуктов реакции получен из исходных веществ известного состава. Рассмотрим, например, реакцию циклопентанона с н-бутиламином в газовой фазе при 300—350° в присутствии катализатора и без него. Эта и другие аналогичные реакции являются частью исследования термического распада найлона 6,6 [566]. Не касаясь в настоящем разделе подробно вопроса относительно химизма этого процесса, остановимся лишь на масс-спектрометрической идентификации двух продуктов реакции. Циклопентанон имеет формулу sHgO и номинальный молекулярный вес 84 молекулярный вес бутиламина — 73, а формула — 4HiiN. Многие продукты реакции могут быть идентифицированы без выделения их из смеси и благодаря тому, что известна формула исходного соединения идентификацию можно осуществить только по пикам молекулярных ионов. Ранее упоминалось, что масс-спектрометрия позволяет устанавливать точную молекулярную формулу неизвестного соединения или каждого из соединений, присутствующих в смеси. Результаты можно сопоставить с данными элементарного химического анализа по соотношению С N Н О. Благодаря этому устанавливают, все ли присутствующие компоненты обнаружены. Другими словами, при исследовании одного типа молекул не обязательно исследовать всю смесь. Так, например, один из компонентов смеси дает большой молекулярный пик с массой 150, который может быть идентифицирован даже без точного измерения масс следз ющим образом. Рассматриваемое соединение не образовано двумя молекулами бутиламина, поскольку молекулярный вес его больше, чем 2 X 73 = 146 оно также не могло образоваться в результате взаимодействия молекулы циклопентанона и бутиламина (масса 157), поскольку для этого в процессе реакции оно должно было бы потерять семь атомов водорода и поскольку продукт имеет четный молекулярный вес, так что в молекуле должно присутствовать четное число атомов азота. Возможный путь образования такого соединения — взаимодействие двух молекул циклопентанона (масса 168) с выделением массы 18. Известно, что при дегидрировании паров циклопентанона при повышенной температуре над активированной окисью алюминия образуется 2-циклопентилиденциклопентанон [c.447]

    При анализе растворов, содержащих перекись водорода, может быть два различных подхода с одной стороны, очень важно иметь возможность открыть или количественно определить в таких растворах перекись водорода (независимо от того, содержится ли она в небольших количествах или представляет основной компонент смеси) с другой стороны, приходится определять наличие примесей или добавок в концентрированных или разбавленных растворах перекиси водорода, в частности таких веществ, которые, несомненно, влияют па стабильность раствора. В первом разделе описаны качественные пробы для открытия и идентификации перекиси водорода без точного вьигснения относительного ее содержания. Эти пробы не только должиы быть чувствительны к небольшим количествам перекиси водорода, но часто желательно также, чтобы они были избирательными и давали возможность отличить перекись водорода от других веществ, обычно от окислителей. Такие окислители иногда фактически могут образовать перекись водорода или л<е последняя может образоваться в результате восстановления атмосферного кислорода, папример под действием некоторых металлов. Поэтому результаты испытания па присутствие или отсутствие перекиси водорода необходимо интерпретировать с соблюдением надлежащей осторожности и с полным учетом всех других присутствующих видов молекул, особенно в случае разбавленных растворов перекиси водорода. Вопрос о помехах при качествепном и количественном анализе обсуждается при рассмотрегши отдельных методов анализа. [c.455]

    Методика группового анализа заключается в газохроматографическом разделении смеси в первом хроматографе и вводе отдельных идентифицируемых компонентов в парофазный пиролизер. После проведения пиролиза образовавшиеся продукты поступают во второй хроматограф, включенный в об-шую схему. На основе качественного состава летучих продуктов пиролиза и количественного их соотношения, полученных из пирограммы, устанавливают функциональность введенного в пиролизер компонента. Эта методика применима не только для индивидуальных соединений, в пиролизер могут быть введены и неразделившиеся или частично разделившиеся в первом хроматографе вещества. Идентификация соединений в исходном образце осуществляется на основе установленной по пирограмме функциональности и зависимости объемов удерживания идентифицируемых летучих соединений от числа углеродных атомов. [c.125]

    Приведены [150] методы определения каучука и таблицы, содержащие описание поведения каучуков при сжигании, их растворимость в органических растворителях, цветные реакции и пробы на окрашивание под микроскопом. Имеется краткий обзор [223], в котором приведены важнейшие детали методов идентификации, применявшихся до 1945 г., и дан их критический анализ. Пожалуй, наиболее полно этот вопрос изложен в настоящее время в Users Memorandum [43], где приведены характеристики главных типов каучуков, а также схема систематического качественного анализа смесей. Для идентификации полимеров в смесях начинает применяться новая техника спектроскопия в инфракрасном и ультрафиолетовом свете и хроматография. Но так как эти методы оказались пригодными и для количественных определений, то они будут рассмотрены в разделе, посвященном количественному анализу каучуков. Такому вопросу, как определение наполнителей и других компонентов смесей, отведен особый раздел. [c.102]


Смотреть страницы где упоминается термин Анализ качественный идентификация разделяемых компонентов : [c.232]    [c.4]    [c.529]    [c.367]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.168 , c.170 , c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Идентификация компонент



© 2025 chem21.info Реклама на сайте