Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качественный масс-спектрометрический анализ

    Бродский Е. С. Качественный масс-спектрометрический анализ типов соединений в нефтяных фракциях и продуктах их переработки.— Нефтехимия, 1977, т. 17, № 3, с, 473— 480. [c.118]

    Качественный масс-спектрометрический анализ и распределение сульфидной серы показали, что первые фракции адсорбционного разделения содержат только ароматические сернистые соединения. Все сернистые соединения сульфидного типа, содержащие атом серы в насыщенном кольце или цепи, перешли в последние фракции, для исследования которых потребовалась разработка специальных аналитических приемов. [c.100]


    Качественный масс-спектрометрический анализ [c.278]

    Качественные масс-спектрометрический анализ и распределение сульфидной серы.показали, что первые фракции адсорбционного разделения содержат только ароматические сернистые соединения. Все сернистые соединения сульфидного типа, содержащие атом серы в насыщенном кольце или цепи, перешли в последние фракции. [c.334]

    Таким образом, основами качественного масс-спектрометрического анализа являются различия а) в массах молекул, б) в распределении интенсивностей менаду линиями в масс-спектро. [c.62]

    Качественный масс-спектрометрический анализ основан на измерении массы ионов. Идентификация масс проводится по положению линии на фотопластинке, которое фиксируют, измеряя расстояние между линиями с известной массой и анализируемой линией. [c.281]

    Разработанные ранее масс-спектрометрические методы анализа нефтяных фракций дают сведения о их групповом составе и позволяют установить наиболее типичные молекулярные структуры внутри любой группы соединений, рассматриваемой как один тип. Эта задача решается снятием и анализом полученных масс-спектров, сопоставлением качественных и количественных данных масс-спектров индивидуальных соединений и узких фракций со спектрами выделенных из нефтяного продукта концентратов, содержащих в основном определенный тип соединений. Снятие и обработка масс-спектров усложняются по мере утяжеления нефтяного сырья, каким являются изучаемые в данной работе экстракты остаточной нефти. В связи со сложностью состава и широким диапазоном изменения молекулярной массы, с преобладанием высокомолекулярной части масс-спектральный анализ не позволяет так определить количественное содержание групп по определенным структурным признакам, чтобы разница масс-спектров соедине- [c.59]

    Химику-органику следует иметь в виду, что поскольку ни одно из существуюш,их воззрений не позволяет количественно предсказать распределение интенсивностей в масс-спектре сложного органического соединения, то, наряду с созданием количественной теории о-бразования масс-спектров на базе изучения первичных и вторичных актов процесса ионизации сложных молекул, необходимы исследования по установлению корреляций между структурой органических соединений и их масс-спектрами. Изучение закономерностей в масс-спектрах органических соединений, связи между строением и распределением интенсивностей приближают нас к решению проблемы определения структуры по данным масс-спектрометрического анализа. С другой стороны, установление различного рода эмпирических правил создает базу для развития методов идентификации качественного и количественного анализов. [c.27]


    Масс-спектрометрический анализ складывается из следующих этапов представление масс-спектров, качественный и количественный анализ. [c.329]

    Масс-спектрометрия в газовой хроматографии. Применение масс-спектрометрии для анализа газохроматографических фракций позволяет проводить качественный анализ компонентов разделенной в колонке смеси непрерывно, без выделения выходящ их из колонки веществ. Второе существенное преимущество метода состоит в том, что для масс-спектрометрии вполне достаточны даже те количества вещества, которые получают при анализе на капиллярной колонке. Таким образом, масс-спектрометр может выполнять функцию детектора. Такой метод сочетания хроматографического анализа с масс-спектрометрическим получил название хромато-масс-спектрометрии. [c.195]

    Масс-спектрометрия длительное время развивалась как метод количественного анализа многокомпонентных смесей и лишь п последние годы нашла применение для идентификации и качественного анализа неизвестных соединений. В этом случае масс-спектрометрия часто используется в сочетании с другими методами, обеспечивающими либо выделение индивидуального соединения из смеси, либо упрощение ее состава. За редким исключением, еще до проведения масс-спектрометрического анализа исследователь обладает определенной информацией об идентифицируемом соединении (физических константах вещества, его стабильности и путях синтеза). Эти сведения определяют принципиальные возможности анализа и метод введения вещества в масс-спектрометр. [c.116]

    Магнитное поле применяется также и в масс-спектрометрическом анализе. В этом методе в ионизационной камере, где остаточное давление составляет 10" —10" мм, молекулы вещества подвергают удару пучка электронов (с энергией 50—70 зв). Под влиянием электронного удара молекулы ионизируются и диссоциируют. Первоначально возникают молекулярные ионы, которые затем полностью или частично распадаются на так называемые осколочные ионы. Образовавшийся сложный пучок ионов разлагают в однородном магнитном поле на отдельные пучки ионов с одинаковым отношением массы к заряду (т/е). В зависимости от строения соединения образуются различные по массе ионы, характерные только для данной группы соединений или для данного вещества. Используя закономерности, связывающие характер масс-спектра со строением вещества, можно применять этот метод для качественного и количественного анализа. [c.214]

    Качественный молекулярный масс-спектрометрический анализ основан либо на измерении массы недиссоциированного молекулярного иона, либо на характеристичности распределения интенсивности между линиями в спектре каждого индивидуального вещества. Степень характеристичности таков , что она позволяет различать практически любые химические соединения и во многих случаях изомеры. Распределения интенсивностей в масс-спектрах индивидуальных веществ, снятые с помощью разных масс-спектрометров при стандартных условиях (температура ионного источника, энергия электронов, условия развертки спектра) приводятся в научной литературе, каталогах, компьютерных базах данных. [c.138]

    Масс-спектрометрический анализ газов. В предыдущем разделе, а также в гл. 9 рассматриваются применения масс-спектрометрии для качественного и количественного анализа смесей органических веществ и для изучения структуры органических соединений. [c.211]

    Количество четырехфтористого углерода в продуктах сгорания определяли, исходя из анализов на СОг и НР, а также непосредственно масс-спектрометрическим анализом бомбовых газов. Помимо количественного анализа на СОг и СР4 проводили качественный анализ газа на СО и СЬ. Оба последних анализа были отрицательными. Раствор, находящийся в бомбе, анализировали потенциометрическим методом на содержание С1-, р-, АзгОз и колориметрическим методом — на содержание азотной кислоты, платины и золота. [c.66]

    Рассмотрены вопросы применения масс-спектрометрического анализа для определения качественного и количественного состава смесей органических соединений, обладающих жидкокристаллическими свойствами. [c.88]

    К сожалению, ни одна из предложенных до сих пор конструкций сепараторов не отвечает всей совокупности перечисленных требований, что, как правило, исключает возможность проведения количественных определений и порой создает большие неудобства при качественном хромато-масс-спектрометрическом анализе, особенно при необходимости идентификации компонентов, присутствующих в пробе в следовых количествах. [c.178]


    Если сведения об элементарном качественном составе пробы недостаточны и необходимы данные о присутствии более сложных компонентов — ионов, образованных несколькими элементами, и молекул, нужно использовать и соответствующие химические реакции, а также данные некоторых физических методов качественного анализа. Таковыми могут быть, например, спектры поглощения в ультрафиолетовой, видимой и инфракрасной областях спектра, данные масс-спектрометрического исследования и др. [c.443]

    Качественный анализ — необходимый этап каждого масс-спектрометрического исследования. Если целью анализа является обнаружение в смеси определенных компонентов, то результат исследования получается на стадии качественного анализа. Если цель анализа — количественное определение содержания компонентов смеси, то качественный анализ является подготовкой к этому определению. При проведении качественного анализа устанавливаются присутствующие в смеси типы соединений (с той или иной степенью достоверности), их структурные особенности, от которых зависит выбор аналитических характеристик для количественного анализа, возможные наложения и другие помехи, которые должны быть учтены или устранены. [c.93]

    Преимущества качественного масс-спектрометрического анализа значительно возрастают при условии, что один из исследуемых продуктов реакции получен из исходных веществ известного состава. Рассмотрим, например, реакцию циклопентанона с н-бутиламином в газовой фазе при 300—350° в присутствии катализатора и без него. Эта и другие аналогичные реакции являются частью исследования термического распада найлона 6,6 [566]. Не касаясь в настоящем разделе подробно вопроса относительно химизма этого процесса, остановимся лишь на масс-спектрометрической идентификации двух продуктов реакции. Циклопентанон имеет формулу sHgO и номинальный молекулярный вес 84 молекулярный вес бутиламина — 73, а формула — 4HiiN. Многие продукты реакции могут быть идентифицированы без выделения их из смеси и благодаря тому, что известна формула исходного соединения идентификацию можно осуществить только по пикам молекулярных ионов. Ранее упоминалось, что масс-спектрометрия позволяет устанавливать точную молекулярную формулу неизвестного соединения или каждого из соединений, присутствующих в смеси. Результаты можно сопоставить с данными элементарного химического анализа по соотношению С N Н О. Благодаря этому устанавливают, все ли присутствующие компоненты обнаружены. Другими словами, при исследовании одного типа молекул не обязательно исследовать всю смесь. Так, например, один из компонентов смеси дает большой молекулярный пик с массой 150, который может быть идентифицирован даже без точного измерения масс следз ющим образом. Рассматриваемое соединение не образовано двумя молекулами бутиламина, поскольку молекулярный вес его больше, чем 2 X 73 = 146 оно также не могло образоваться в результате взаимодействия молекулы циклопентанона и бутиламина (масса 157), поскольку для этого в процессе реакции оно должно было бы потерять семь атомов водорода и поскольку продукт имеет четный молекулярный вес, так что в молекуле должно присутствовать четное число атомов азота. Возможный путь образования такого соединения — взаимодействие двух молекул циклопентанона (масса 168) с выделением массы 18. Известно, что при дегидрировании паров циклопентанона при повышенной температуре над активированной окисью алюминия образуется 2-циклопентилиденциклопентанон [c.447]

    В книге и.злагаются основы современной масс-спектрометрин н обобщается опыт ее использования в лабораторной практике и на заводах в качественном и количественном анализе органических соединений, в частности для непрерывного контроля производства. Большое внимание уделяется также зависимости между масс-спектрами и строением органических соединений, иа основе которой создаются методы масс-спектрометрического анализа. Кратко рассматриваются возможности применения масс-снектрометрии для решения важнейших теоретических проблем химии, демонстрируются богатые возможности, которые открывает этот метод исследования веществ. [c.2]

    С помощью масс-спектрометрии как аналитического метода решают громадное число качественных и количественных задач. Качественные исследования заключаются в определении структуры неизвестного соединения, в частности, природных веществ, метаболитов лекарственных препаратов и других ксенобиотиков, синтетических соединений. Масс-спектрометрический анализ дает важную информацию для определения молекулярной массы, молекулярной формулы или элементного состава и структуры молекул. Масс-спектрометрия является наиболее чувствительным спектроскопическим методом молекулярного анализа по сравнению с другими рассмотренными методами, такими, как ЯМР- и ИК-спектроскопия. Для количественного анализа масс-спектрометрию используют при разработке арбитражных методов и методов сравнения, при количественном определении, например, полихлордибензодиоксинов (ПХДД) и наркотических препаратов. Масс-спектрометрия сегодня развивается очень быстро, охватывая все более широкие области применения, например анализ биомакромолекул (разд. 9.4.4). [c.255]

    В первом разделе рассматриваются масс-спектрометры и масс-спектрографы с большо11 разрешающей силой. Во втором разделе собраны доклады, посвященные масс-спектрометрическому анализу веществ в твердом состоянии (анализ изотопного состава лития, свинца и кадмия изучение поверхностной ионизации серебра и меди количественный и качественный анализ примесей в сталях, магнии, алюминии, меди, графите и кремнии). Большое место занимает раздел Применение масс-спектрометров в органической химии анализ тяжелых нефтяных масел, анализ коррозионно-активных газов на атомных предприятиях. Ряд докладов посвящен теоретическому истолкованию масс-спектров сложных органических соединений. [c.4]

    Использование тяжёлого кислорода в биологических исследованиях. Касаясь использования кислорода, меченого в биологических исследованиях, необходимо отметить работы Б. Б. Вартапетяна [15-17], проведённые в Институте физиологии растений (ИФР) АН СССР, который изучал скорость поступления и распределение Н О в тканях различных органов растений фасоли. Автор обнаружил, что не во всех органах растений сразу достигается равновесие между водой в тканях растений и водой питательного раствора. В листьях и корнях растений имеется какое-то количество труднообмениваемой воды. В других работах автор исследовал с использованием Нз О и 2 окисление катехинов, которые играют большую роль для получения качественного чая при его технологической переработке. Было показано, что в состав окисляемых соединений включается как атмосферный молекулярный кислород, так и кислород Н2О. Наряду с прямым включением в состав конденсированных продуктов, молекулярный кислород используется как акцептор водорода субстрата окисления. В своих исследованиях дыхания растений с использованием и Н О автор показал, что молекулярный кислород, поглощаемый из атмосферы при дыхании проростков пшеницы, не выделяется прямо с СО2 дыхания, а идёт на образование Н2О в тканях растения, тогда как изотопный состав кислорода углекислоты дыхания соответствует изотопному составу воды ткани. Автором разработан метод для изотопного масс-спектрометрического анализа кислорода органических соединений. [c.552]

    Уже в ранних работах [5] по масс-спектрометрическим исследованиям паровой фазы над окислами элементов группы лантанидов сделаны важные выводы о качественном составе пара было показано, что полуторные окислы диссоциируют на газообразные моноокислы, атомарные металл и кислород (обнаружено также существование молекул двуокисей у церия, празеодима и тербия). Энергии диссоциации моноокисей получены на основании эффузионных измерений скорости испарения полуторных окислов в сочетании с масс-спектрометрическим анализом состава пара [272], а также путем изучения равновесий ряда изомолекулярных обменных реакций [93, 162, 273] типа (Мх) + (МО) (М) + (М1О). Результаты этих исследований обобщены в справочнике [18], поэтому мы их здесь не обсуждаем. [c.94]

    В лаборатории авторов требовалось разработать простой и быстрый метод, который давал бы достаточно точные результаты при анализе большого числа проб, содержащих два или большее число таких соединений, как вода, ацетон, диэтиловый и диизо-пропиловый эфиры, а также этиловый и изопропиловый спирты. Алализ проб с помощью масс спектрометрии нарушил бы настройку прибора кроме того затруднения, с которыми связан масс-спектрометрический анализ кислородсодержащих соединений, вообще исключает возможность использования этого метода. Перегонка в большинстве случаев могла бы дать удовлетворительные результаты для веществ, присутствующих в больших количествах, но по этому методу нельзя разделить ацетон и ди-изопропиловый эфир. Кроме того, перегонка требует постоянного внимания экспериментатора в течение длительного времени. Например, перегонка проб, содержащих эфир и ацетон, а также спирт, требует 8 часов. Авторами была исследована возможность использования метода газо-жидкостной распределительной хроматографии для рассматриваемого случая анализа. Для разделения низкокипящих спиртов и кетонов была предложена колонка с триэтиленгликолем в качестве стационарной жидкости . Была установлена опытная колонка такого типа и проведена качественная и количественная калибровка. [c.147]

    Для качественной идентификации отобранные фракции подвергались инфракрасному или масс-спектрометрическому анализу. Чрезмерная длина колонки, требуемая для данного, разделения, а также связанное с этим продолжительное время анализа очищенного стирола на колонках с насадкой побудили автора этой статьи рассмотреть возможность использования капиллярных колонок. Изобретение Лавлоком ячейки с тремя электродами позволило создать детектор, чувствительность которого достаточна для определения примесей в стироле с помощью капиллярных колонок. [c.243]

    Значительная летучесть и термическая устойчивость трициклопентадиенилов, характеристичность их масс-спектра позволяют рекомендовать эти соединения для качественного и количественного масс-спектрометрического анализа смесей р.з.э. Наличие же в масс-спектрах интенсивных линий иона металла, для которых хорошо выполняется изотопное соотношение [11], дает возможность использовать трициклопентадиенилы для изотопного анализа р.з.э. [c.117]

    Масс-спектрометрический анализ нафтенов, неизомеризуемых и недегид-рогенизуемых после изомеризации, показал качественное сходство с на-фтенами соответствующей фракции углеводородов из кислот, описанных в работе [16]. [c.41]

    Возможности масс-спектрометрического метода при установлении структуры алициклических углеводородов весьма ограничены. Массовое число пика М+ позволяет легко определять степень цикличности. Однако качественные картины распада этих соединений довольно близки. Основные пики в их масс-спектрах возникают в результате отрыва алкильных заместителей (распад А-1), выброса нейтральных молекул олефинов, как правило, из цикла (распад В), сложного расщепления циклической части, часто сопровождающегося водородными перегруппировками. В низкомолекулярных областях масс-спектров таких соединений присутствуют интенсивные пики ионов, которые являются характеристичными для ненасыщенных углеводородов. Например, моноциклическим углеводородам свойственны пики ионов [ H2n-i]+ miz 41, 55, 69 и т.д.), а бициклическим — [С Н2 -з]+ miz 39, 53, 67 и т.д.), интенсивности которых используются в характеристических суммах при структурногрупповом анализе парафино-нафтеновых фракций нефтей [25J. Основные первичные акты расщепления М+- происходят, очевидно, у центров разветвления, т. е. у С-атомов, несущих заместители или находящихся в месте сочленения циклов. Очень частыми для нафтеновых углеводородов являются реакции расщепления колец с выбросом нейтральных молекул С Н2п, что приводит к так называемым псевдомолекулярным ионам, обладающим массой, равной молекулярным массам низших гомологов. [c.33]

    II часть посвящена масс-спектральным методам анализа. В настоящее время масс-спектрометрия стала, пожалуй, самым распространенным и универсальным аналитическим методом, в особенности после сочленения масс-спектрометра с хроматографом и создания хромато-масс-спектрометра с машинной записью и обработкой результатов по заданной программе. Работы, посвященные применению этого метода в том или ином виде, занимают основное место-в сборнике. Описаны методики хромато-масс-спектрометрического исследования индивидуальных соединений и смесей олефиновинафтенов, основанные на использовании микрореактора гидрирования методики качественного и количественного анализа группового состава углеводородных и гетероатомных соединений нефтяных фракций, твердых горючих ископаемых, рассеянного органического вещества осадочного чехла продуктов переработки нефти и др. Рассмотрены конкретные методики анализа указанных продуктов с использованием ЭВМ. Разобран вопрос о точности предлагаемых методик группового-анализа. Приводится подробный разбор конкретных примеров с детальным анализом всех особенностей методов для получения первичной информации о химическом составе и сделаны выводы, демонстрирующие применимость предложенных методов для решения широкого круга химических и геохимических задач. [c.4]

    Казинс, Кланси и Кребл [117] указали, что для качественного и количественного анализа смесей нафтенов желательно применять сочетание различных методов. При исследовании методом осколочных ионов образца асфальта с молекулярным весом от 500 до 900, полученного в результате прямой перегонки нефти Западного Техаса, было установлено, что основными молекулярными структурами в нем являются гетероциклические и ароматические ядра [100]. Герлан [240] составил матрицы для расчета масс-спектрометрических результатов при помощи цифровой машины (для систем, содержащих до 28 компонентов). [c.657]

    А. Кейлеманс и С. Перри [1] показали большие возможности пиролитического метода для идентификации парафиновых углеводородов. Пиролиз проводили в пустой кварцевой трубке при 500° С. На примере анализа изомерных гексанов (2,2-диметилбутана и 2,3-диметилбутана) ими была установлена корреляция между наблюдаемыми продуктами и возможным разрывом молекулы по различным связям С—С. В дальнейшем А. Кейлеманс и К. Крамере [49] усовершенствовали пиролитический метод, использовав инертный золотой реактор (длина 1 м, диаметр 1 мм) и эффективные колонки для разделения продуктов пиролиза, цис- и транс- Изомеры дают близкие качественные картины продуктов пиролиза, но степень превра-ш ения различна. В некоторых случаях метод пиролиза, по сравнению с масс-спектрометрическим методом, дает более цепные результаты. Так, например, 2-метил-пентан-2 и 4-метил-г ис-пентен-2 дают подобные масс-спектры, но резко различные хроматографические спектры продуктов пиролиза. Метод пиролиза более прост, но позволяет получать приблизительно такую же аналитическую информацию, что и масс-спектрометрический метод. Воспроизводимость обоих методов практически одинакова. [c.72]

    И наоборот, в случае соединения неизвестного строения отщепление СН3О может указывать на наличие этой группы в молекуле, хотя о структуре иона неизвестно ничего, кроме элементного состава. Таким образом, для структурного анализа органических соединени с помощью масс-спектрометрии достаточно изучить и сопоставить масс-спектры многих соединений известного строения, чтобы полученные сведения использовать в дальнейших исследованиях. Такой эмпирический подход является общим в органической химии и широко используется в ИК-, УФ- и ЯМР-спектроскопии. Поскольку неизвестна истинная структура ионов, невозможно достаточно строго обсуждать механизмы масс-сиектрометри-ческой фрагментации п тем более участие промежуточных и переходных состояний. Тем не менее в литературе широко публикуются механизмы масс-спектрометрической фрагментации, которые иногда подтверждаются данными исследования изотопной метки. Оказываются ли такие механизмы верными или ошибочными, не влияет на истинную ценность структурной масс-спектрометрии как эмпирического метода. Ниже описываются две качественные теории масс-спектрометрии, которые ока- [c.66]

    Наиболее важным аналитическим методом при исследовании ОСС нефтяных дистиллятов (особенно средних и высококипящих) является масс-спектрометрия. При масс-спектрометрическом методе молекулы ионизируются под действием электронов с различными энергиями, что приводит к образованию ряда специфических фрагментов, характерных для дайкой молекулы. Сопоставляя интенсивности пиков молекулярных ионов, Броун и Мейерсон впервые провели качественный анализ сераорганических соединений нефтяных дистиллятов [22]. Подобная качественная оценка сульфидов приведена также в работе [6]. [c.52]


Смотреть страницы где упоминается термин Качественный масс-спектрометрический анализ: [c.179]    [c.90]    [c.60]    [c.19]    [c.60]    [c.61]    [c.26]    [c.505]    [c.449]   
Смотреть главы в:

Масс-спектрометрия в органической химии -> Качественный масс-спектрометрический анализ




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный



© 2025 chem21.info Реклама на сайте