Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антрацен электронные спектры поглощения

    Чтобы понять, как характер поглощения связан со строением органического вещества, вернемся к условию Бора Е — Ео = /IV. Чем ближе друг к другу находятся оба энергетических уровня (основной и возбужденный), тем меньше затрата энергии на возбуждение, тем меньшей энергией может обладать действующий квант света, тем, следовательно, меньше его частота (и соответственно больше длина волны). Разность энергий Е — Ед определяется природой возбуждения. Свет видимой и ультрафиолетовой частей спектра обладает энергией, достаточной для возбуждения электронов затрачиваемая на возбуждение энергия определяется в конечном счете подвижностью электронов. Так, электроны 0-связей требуют для своего возбуждения квантов с большой энергией, эти электроны малоподвижны. Поэтому предельные углеводороды, спирты, простые эфиры поглощают лишь в очень далекой ультрафиолетовой области. Этилен, имеющий подвижные л-электроны, поглощает свет при 193 нм. Сопряженные двойные связи в бутадиене, обладая еще большей подвижностью я-электронов, вызывают поглощение уже при 217 нм. В бензоле я-электронная система имеет несколько полос поглощения, наиболее длинноволновая из которых расположена в области 260—270 нм. Нафталин поглощает уже при 314 нм, антрацен — при 380 нм. На этих примерах видно, как с ростом сопряжения (ростом подвижности электронов) поглощение постепенно сдвигается в длинноволновую область — в область квантов со все меньшей энергией. Однако все упоминавшиеся пока соединения бесцветны — их поглощение лежит в ультрафиолетовой области спектра. [c.358]


    Антрацен (III). Имеет симметрию Спектр поглощения содержит три электронные полосы с хорошо разрешенной колебательной структурой (26 ООО [c.78]

    Чем ближе друг к другу находятся оба энергетических уровня, тем меньше затрата энергии на возбуждение, тем меньшей энергией может обладать квант света, т. е. меньше частота (и, наоборот, тем больше соответствующая этой частоте длина волны). Разность энергии Е — Ео определяется в конечном итоге подвижностью электронов. Так, электроны о-связей связаны весьма прочно для возбуждения их нужны кванты с большой энергией. Поэтому предельные углеводороды, спирты, простые эфиры поглощают лишь в очень далекой ультрафиолетовой области. Этилен, имеющий подвижные я-электроны, поглощает при 193 нм. Сопряженные двойные связи в бутадиене СН2=СН—СН = СНг, обладая еще большой подвижностью я-электронов, поглощают уже при 217 нм. В бензоле я-электронная система имеет несколько полос поглощения, наиболее длинноволновые из которых расположены в области 260—270 нм. Нафталин поглощает уже при 314 нм, антрацен — при 380 нм. На этих примерах видно, что с ростом сопряжения (ростом подвижности электронов) наблюдается постепенный сдвиг поглощения в длинноволновую область. Однако все упоминавшиеся до сих пор соединения бесцветны, так как их избирательное поглощение лежит в ультрафиолетовой области спектра. Видимая желтая окраска появляется лишь у нафтацена (Хмакс = = 480 нм)  [c.478]

    Электронно-колебательные спектры ПАУ поглощения и люминесценции зависят от строения и размера молекул. С увеличением числа бензольных ядер в молекуле ПАУ оптические спектры смещаются в сторону больших длин волн, что является следствием большего понижения верхних (возбужденных) 5 -и Г -уровней в ряду по сравнению с соответствующими основными уровнями [439]. Эта зависимость особенно наглядна у ряда молекул с линейным расположением колец (бензол, нафталин, антрацен, нафтацен и др.). При этом частоты —5о- и Т —5о-переходов при добавлении бензольного кольца уменьшаются в среднем на 5000 см . При другом способе конденсирования бензольных ядер эта величина несколько меньше. Можно заметить, что спектры определяются максимальным числом бензольных колец, расположенных в один ряд. Так, спектры [c.237]

    Трициклические углеводороды с двумя бензольными кольцами и одним пятичленным насыщенным кольцом (аценафтен) несколько слабее адсорбируются на кристаллах карбамида и его комплексах с н-алканами. Это можно объяснить тем, что в насыщенном кольце на один углеродный атом меньше, чем у тетралина, а электронное облако в меньшей степени смещено от оси симметрии молекулы. Самая слабая интенсивность спектра поглощения ЭПР обнаружена у трициклических углеводородов (антрацен), причем поверхность кристалла насыщается пара-магннтными центрами антрацена при его концентрации в растворе порядка 0,8-1.0% (масс.),в то время как в [c.50]


    Работа посвящена изучению процессов захвата электронов при низкотемпературном радиолизе поливинилхлорида (ПВХ) и полиметилметакрилата (ПММА) как акцепторными добавками, так и самими полимерами. Кроме того, изучалось влияние добавок на выход газообразных продуктов радиолиза ПВХ (НС1, Hg). Для изучения этих процессов в качестве конкурентных электроноакцепторных добавок мы использовали соединения, анион-радикалы которых можно получить обычными химическими методами ароматические углеводороды [6] (антрацен, г-терфенил) и хино-ны (ге-бензохинон [7], хлоранил [8]). Спектры поглощения и ЭПР соответствующих анион-радикалов известны [9, 10] из литературы. Добавки в количестве 0,03—1,0 мол.% вводили в полимерные пленки, получаемые испарением растворов ПВХ в дихлорэтане и ПММА в метипенхлориде. Облучение проводили в запаянных ампулах в вакууме ( 10 мм рт. ст.) при 77°К Y-лучами Со °. Образование анион-радикалов изучали по спектрам поглощения в видимой и УФ-области и по спектрам ЭПР при 77°К. Оптические спектры поглощения измеряли на спектрофотометре СФ-4 в специально сконструированной кварцевой дьюаровской ячейке, особенностями которой было отсутствие жидкого азота на пути луча и точная магнитная фиксация образцов. Спектры ЭПР записывали на радиоснек- [c.218]

    ПО отношению к целлюлозе. Например, лейкосоединения дибензантрона, его 16,17-диметоксипроизводного и изодибензантрона отличаются очень высокой субстантивностью. Следует напомнить, что длина волны и интенсивность максимума поглощения также повы-щаются в ряду бензол, нафталин, антрацен и т. д. Вероятно, что резонанс молекул, с которым связан характер поглощения света, также обусловливает субстантивность красителей, являющихся производными этих кольцевых систем. Вследствие электронного резонанса между молекулами большие плоские молекулы в растворе склонны к полимеризации, на что иногда указывает появление в спектре поглощения z-полосы. По мере увеличения размера циклической системы возрастает склонность ароматических соединений к образованию продуктов присоединения (например, с пикриновой кислотой). Большая поляризуемость сложных циклических систем увеличивает возможность взаимодействия между красителем и целлюлозой. Несмотря на высказанное предположение, что основным механизмом связывания молекул красителя и целлюлозы является образование водородных мостиков, в настоящее время несомненно, что даже в отсутствие таких связей для межмолекулярного притяжения целлюлозы и красителей, например лейкосоединений антрахиноновых кубовых красителей с конденсированными многоядерными ароматическими системами, достаточно дисперсных и электростатических сил, возникающих в результате постоянных диполей в молекуле целлюлозы и красителя. Однако в этом случае [c.1472]

    Дейнтон и др. [62] и Кэмп и др. [148[ исследовали быстро исчезающие спектры поглощения, возникающие в разбавленных растворах нафталина в бензоле при действии коротких импульсов электронов (2 мксек). Этим путем наблюдалось сенсибилизированное растворителем образование триплетного состояния нафталина. ]Тосворти [183] наблюдала перенос энергии возбуждения от бензола к диметилфума-рату и антрацену. Перенос энергии вызывает изомеризацию диметил-фумарата, измеряемую аналитически, и возбуждение антрацена до триплетного состояния, обнаруживаемое путем кинетических измерений ультрафиолетовых спектров в растворах, облученных импульсами излучения. Антрацен, по-видимому, конкурирует с реакцией фумарата, и величины для антрацена и фумарата равны 746 и 320 л моль соответственно. Принимая коэффициент экстинкции равным 7-10 (при 430 нм), можно вычислить величину С образования триплетного состояния антрацена, составляющую 1,1, и О(диметилмалеат) 2. Хотя в этих экспериментах наблюдаются реакции фумарата и антрацена, возбужденных в триплетное состояние, не было доказано, что это то же самое состояние возбуждения, которое переносится донором. Позже Кандэлл и Гриффитс [60] показали, что выход триплетного состояния антрацена в бензоле при добавлении высоких концентраций циклогексена, являющегося тушителем триплетного состояния бензола, может уменьшиться только на 40%, поэтому только часть триплетов антрацена могла образоваться путем реакции переноса энергии триплетов. (Это очень важный результат, делающий ненадежными многие опубликованные величины выхода радиолитического образования триплетного состояния бензола, измеренные косвенными путями. Однако можно возразить, что использованная высокая концентрация циклогексена фундаментально изменяет характеристики ароматической системы, поэтому необходимы очень тщательные исследования, прежде чем отбросить прежние предположения, основанные на ряде хороших корреляций.) [c.126]

    В ультрафиолетовой области спектра антрацен имеет сильную полосу поглоще-оси ния при 2500° А и полосу умеренной интенсивности около 4000 Л, которые в общей классификации электронных спектров ароматических углеводородов, данной Кларом [15], обозначены как Р- и р-полосы соответственно. Спектры поглощения (—)-изомеров 1, Г-диантрилов 1 и II сходны, но р-полоса расщеплена, а вращательные спектры имеют в каждом [c.76]


    Конденсированные арены делятся на две группы — линейные, или аце-пы (антрацен пентацен и т. д.), и угловые (ангулярные), к которым относятся фенантрен, пирен, хризен и т. д. В аценах общие грани соседних бензольных ядер все лежат на одной прямой (оси дг), тогда как в ангулярных линии, соединяющие общие грани, лежат на нескольких прямых, образующих угол друг с другом. Важно отметить, что обобщение тс-электронов в аценах выражено сильнее, чем у ангулярных систем. Так, в ряду нафталин — ашрацен — пентацен и т. д. формируется общий сильный хромофор с поглощением в видимой области спектра. В этом ряду уже тетрацен имеет желтую окраску, тогда как пирен и хризен, также имеющие по четыре бензольных ядра, но ангулярное их расположение, — бесцветны. [c.337]

    Зонную теорию обычно используют для описания ионных кристаллов [104], которые, как правило, являются хорошими изоляторами. Полагают поэтому, что ее можно применять также при описании молекулярных кристаллов. Например, с использованием этой теории рассматривались электрические свойства кристаллов Ь и Зв [102], а также электрические свойства кристаллов типа антрацена [33]. Однако при рассмотрении молекулярных кристаллов встретились затруднения, которых не возникает, например, в случае ковалентных кристаллов типа германия или соединений двух элементов. Бьюб [18] приводит более 100 таких соединений, имеющих тесное соответствие между энергетической щелью и длинноволновой границей поглощения. Изучение всех этих кристаллов несколько осложнено наличием экситонов их спектр вполне определяется энергетической щелью. Дополнительной характеристикой служит и то, что вообще в таких соединениях эффективная масса электрона (а также дырки) имеет примерно тот же порядок величины, что и масса свободного электрона. Молекулярные кристаллы, такие, как антрацен, отличаются от только что обсуждавшихся неорганических соединений тем, что начало сильного поглощения у них непосредственно не связано с энергетической щелью между нижней зоной и зоной проводимости. Край поглощения кристаллом непосредственно связан с краем погло- [c.661]

    По влиянию на спектры Черкасов разбил заместител на две группы. К первой отнесены те заместители (напри мер, алкильные, галоидные и т. д.), которые вызываю-некоторый батохромный сдвиг полосы, не изменяя су щественно ее вида по сравнению с соответствующей поло сой антрацена. Во вторую группу включены сильно изме няющие спектр заместители, которые имеют кратные связи сопряженные с л-системой антрацена, или связаны с угле родом антраценового ядра через атомы с неподеленным] парами электронов (например, NH2,0H). Если взаимодей ствию я- или /г-электронов заместителей второй группы > я-электронами антраценового ядра не препятствуют сте рические факторы, то спектры замещенных антрацен, изменяются настолько, что идентификация отдельны электронно-колебательных полос становится весьма труд НОЙ. При стерически затрудненном сопряжении, что на блюдается, в частности, у жезо-замещенных антрацена длинноволновая полоса поглощения имеет типичный дл антрацена вид, но в спектрах флуоресценции обнаружи ваются специфические изменения (размытая колебательна структура, нарушение зеркальной симметрии, увеличе ние стоксового сдвига). [c.156]


Смотреть страницы где упоминается термин Антрацен электронные спектры поглощения: [c.155]    [c.558]    [c.126]    [c.283]    [c.326]    [c.105]    [c.277]   
Курс физической органический химии (1972) -- [ c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Антрацен

Поглощение электроном

Спектры поглощения электронные

Спектры электронные



© 2024 chem21.info Реклама на сайте